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In this document, a physics problem and its solution are reported. This problem is presented
here to describe the Potential Function of a subatomic particle and to show how the force that one
particle exerts on another like particle is calculated using the potential function.

The conclusions reached in solving this problem using
pseudo-classical techniques should give an insight with
regard to how the wave function of quantum mechanics
can be visualized in a manner similar to what we would
use in classical mechanics; i.e., how to view and work with
a cloud like distribution as if it were a classical particle,
located at a point.

Finally, applying the techniques shown in this problem
indicate the methods which may be used to visualize the
potential function within a subatomic particle.

I. POTENTIALS AND FORCES

In classical physics, when one entity exerts an influence
on another entity that would cause the entities to move,
we call this influence a force, F, which is a vector which
has both magnitude and direction. Also, we describe
this force as being produced by a potential, V , such that
F = −∇V , the negative of the gradient of the potential.

The use of the symbol,F , expresses the magnitude of
the vector F.

From the time of Newton, it has been thought that
the potential function of one infinitesimal mass, in the
presence of another mass, is equal to the negative of a
constant divided by the distance between the two masses.
From this we can see that the force on mass m, in the
presence of mass M is given by: F = gmM/(r2), where
g is a constant.

Please notice that as r goes to 0, the force becomes
infinite. Since F = −∇V , then, V = gmM/r. So, the
potential also becomes infinite at r = 0 . Clearly, the
Newtonian formulae are incorrect when r is very close to
0.

II. SETTING UP THE PROBLEM

Let us assume the existence of a large sphere with
(mass) density that depends only upon the distance from
the center of the sphere. This means that if we were to
break up our sphere into a set of very thin concentric
spherical shells, all of the matter in one shell would have
the same value of density (mass per unit volume.) But
the density of one shell need not be the same as the den-
sity of another shell.
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For the moment, let us say that our sphere is the earth.
But, this is an idealized earth as our true earth is not as
uniform in density as the sphere that we want to consider.

Let us now consider a very small mass and imagine that
it is a golf ball. Its size is certainly much smaller than
the size of the earth, and its mass is also much smaller
than that of the earth.

Also, let us say that there is a hole drilled in the earth
that goes from the surface of the earth straight to the
center of the earth and extending straight out on through
to the other side. This hole is just large enough to pass a
golf ball but it is not large enough to disrupt any of our
calculations.

Our problem is to calculate the force that the earth
exerts upon the golf ball. Call this the weight of gravity.
Also, we want to calculate the values of the potential
function that produces this force.

We want to consider what happens to the calculated
value of the force and the value of the potential as the
golf ball travels from an almost infinite distance from the
earth, accelerates toward the earth, comes to the proxi-
mal surface of the earth, passes into the hole in the earth,
passes the exact center of the earth, passes toward the
distal surface of the earth, and finally passes the distal
surface of the earth to proceed on its way out to infinity
on the other side of the earth.

To start our search for a solution, i.e., deriving an equa-
tion that gives us a number, the force that the earth ex-
erts upon the golf ball, let us start our solution process by
considering another very small mass (another golf ball)
separated from the first mass by a distance, r. Sir Isaac
Newton told us that the magnitude of the force, F , ex-
erted on each of the two masses separated by a distance
r is given by a simple formula. The force equals a con-
stant times the mass of the first particle times the mass
of the second particle divided by the square of the dis-
tance between the two particles. This is the very famous
Newton’s law of gravity.

The earth is comprised of a very large number of very
small masses. Our quest is to calculate the force on the
golf ball due to all of the masses of the earth. We proceed
by defining an equation that expresses Newton’s formula
for each small mass and the golf ball. We find that this
gives us three equations, as force has three directional
components. So, to find the total force exerted on our
golf ball, we must add all of the contributions to the force
that is due to all of the very small particles that comprise
the earth.

The first thing that we see is that the force is a vector
quantity; that is, force has a magnitude and a direction
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so the formula for the force on our golf ball can be bro-
ken into three components. Two of these components are
perpendicular to each other and each of these are perpen-
dicular to the line extending from the small mass to the
center of the earth. The third component is along the
line to the center of the earth.

The mathematician would find that two of these inte-
grals produce a zero result. This means that when one
carries out this complicated mathematical operation of
integration, we would find that the total force exerted on
our golf ball by the entire mass of the earth, is directed
toward the center of the earth.

If this problem were to be given to a physicist, he would
say immediately that, by symmetry,the two forces per-
pendicular to the line extending to the center of the earth
is zero because for every small particle in the earth is
balanced by a counterpart mass on the other side of the
earth, pulling in the opposite direction, canceling each
other out. The physicist would then proceed to work out
the one rather complicated integral equation, depending
only upon r.

The formula for the force on our golf ball by the entire
earth is given by a very simple formula where the force
equals the product of a constant, times the mass of the
golf ball, times the total mass of the earth, divided by
the distance between the golf ball and the center of the
earth, squared.

By using the simplified equation, we have taken a dis-
tribution of mass over a very large volume and replacing
it with a single number is saying that we can visualize
the solution of the problem by taking all of the mass of
the earth and concentrating it at one point at the cen-
ter of the earth. This statement is true even though our
density function may not be the same for all values of r.

This problem can be extended to good advantage. Let
us say that our golf ball is in the hole in the earth, so
that it is somewhere in the interior of the earth. Our
engineer would tell us that he has also seen that it had
been worked out previously that the expression for the
force on the golf ball has precisely the same form; but
now the total mass of the earth that we used before must
be replaced by the total mass found inside a sphere with
a radius that is equal to the distance the golf ball is from
the center of the earth. The contribution to the force due
to mass of the spherical shells at a radius greater that the
distance between the golf ball and the center of the earth
cancels out! There is no net force on the golf ball that
is due to all the mass at a distance from the center of
the earth that is greater than the distance the golf ball
is presently from the center of the earth.

One can also ask, what is the force on the golf ball if it
is located far from the surface of the earth. We use the
famous Newton formula. We still use the total mass of
the earth as we did had the golf ball been placed on the
surface of the earth.

An experienced mathematician would say that this
problem has been solved and its validity has been proved.
This proof is called the Shell Theorem.
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Wikipedia has a nice discussion of the Shell Theorem

III. NON-NEWTONIAN POTENTIAL
FUNCTIONS

When the golf ball is found at a distance that is greater
than (or equal to) the radius of the earth, R, the Newton
formula holds, precisely. But, when the golf ball is inside
the earth, this is no longer true.

Let us assume that the earth’s mass density function
is a constant. When this is so, the magnitude of the force
F , is proportional to the mass of the earth held withing
a sphere of radius r, which is the distance between the
golf ball and the center of the earth.

The area of a spherical shell with radius r is

Area = 4πr2 (1)

The volume of a sphere with radius r:

V olume = (4/3)πr3 (2)

The density of the earth at radius r is defined to be

density = ρ(r),when 0 ≤ r ≤ R, 0 otherwise (3)

If ρ0 is a constant and

ρ(r) ≡ ρ0 when 0 ≤ r ≤ R, 0 otherwise (4)

then, the total mass of the earth is:

MR = (4/3)πρ0R
3 (5)

. The mass inside a sphere of radius r is:

Mr = (4/3)πρ0r
3 (6)

.
The force on the golf ball when it is at R:

F = kmMR/R
2 = km(4/3)πρ0R

3/R2 = km(4/3)πρ0R
(7)

The potential at R:

V = −km(2/3)πρ0R
2 (8)

The force on the golf ball at r, where r ≤ R is

F = kmMr/r
2 = km(4/3)πρ0r

3/r2 = (4/3)kmπρ0 r
(9)

The potential at r is:

V = −(2/3)kmπρ0 r
2 (10)

Initially, the golf ball is located a very great distance
from the earth. The golf ball will experience a force of
attraction toward the earth and it will accelerate in the
direction of the earth. Until the golf ball reaches the
proximal surface of the earth, the force increases. But,
as the golf ball passes into the hole in the earth, the
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force will decrease. The force experienced while the golf
ball is within the outer surface of the earth is directly
proportional to the distance to the center of the earth.

When the golf ball is precisely at the center of the
earth, the force that it experiences is identically zero.
But, as its velocity is not zero, it will continue to travel
outward toward and through the distal surface of the
earth. At this point, its velocity will be the same as it
was when it entered the proximal surface.

As the golf ball moves away from the earth, it experi-
ences a force which is the same in magnitude as it expe-
rienced when it approached the earth (at the same dis-
tance), but the direction of the force is reversed, pointing
back to the center of the earth.

Let us now pretend that the earth is miscible. This
means that an infinitesimal mass would approach the
earth and pass through the huge number of infinitesimal
masses that comprise the earth. The same equations ap-
ply.

Before we continue, let us record the following:
When the density function is not a constant,

ρ = ρ(r),when 0 ≤ r ≤ R, 0 otherwise. (11)

The mass of a spherical shell at radius r:

dm = 4πr2ρ(r)dr (12)

The total mass of the earth, as before is:

MR = (4/3)πR3ρ0 = 4π

∫ R

0

x2ρ(x)dx (13)

The mass inside a sphere of radius r:

Mr =

∫ r

0

4πx2ρ(x)dx (14)

And, the force on the golf ball at r:

F = kmMr/r
2 (15)

IV. THE COLLISION OF TWO GOLF BALLS

If two miscible golf balls were located at an almost
infinite distance from each other, each would experience
a force of attraction to the other golf ball. As the two golf
balls move toward each other, pass through each other
and proceed out the other side, the equations for the
force and potential are the same as those given above.

V. QUANTUM MECHANICAL GOLF BALLS

Let our golf balls be represented by mass probability
distribution functions; that is, by quantum mechanical
wave functions. Performing the calculations to produce
the values of the forces and potentials will produce ex-
pressions that are the same as the results shown, above,
describing the classical problem.
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