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Small-Angle X?Ray Scattering Determination of Particle-Diameter Distributions

in Polydisperse Suspensions of Spherical Particles*t
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A scheme is developed for using small-angle x-ray-scattering data to find the distribution of the particle
diameters in dilute colloidal suspensions of noninteracting spherical particles. No assumptions need to be
made about the form of the distribution function. An investigation is made of the errors likely to be intro-
duced in the numerical operations on the data. The method was tested on theoretical scattering curves for
which the calculations could be done both numerically and analytically. After these tests showed the feasi-
bility of the calculation, diameter distributions were computed from the x-ray small-angle scattering data
from some polydisperse colloidal samples composed of spherical particles. The results suggest that this tech-
nique may often be a useful procedure for analysis of small-angle x-ray-scattering data.

INTRODUCTION

IT is often of interest to know the distribution of
particle diameters in colloidal suspensions. Several
attempts have been made to determine this distribution
by small-angle x-ray scattering. Hosemann,! Shull and
Roess,? and Roess and Shull® devised schemes whereby
the distribution function could be found by comparing
experimental small-angle x-ray scattering data with
plots of theoretical scattering curves calculated by
assuming reasonable forms for the single-particle
scattering curve and the particle-diameter distribution
functions. This technique is not always a sensitive
method of deciding between different diameter dis-

" * This work was supported by the National Science Foundation.

T A more detailed decription of this investigation is given in a
thesis submitted by J. H. Letcher in 1963 in partial fulfillment of
the requirements for the Ph.D. degree at the University of
Missouri. :
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tributions, since very different diameter distribution
functions can often yield remarkably similar scattering
curves. The method also has the disadvantage of re-
quiring assumptions about the form of the distribution
function. '

Several authors have described methods of finding
the distribution function. Roess* showed that for a
polydisperse sample of independent spherical particles,
the diameter distribution could be obtained from an

integral transform of the scattered intensity. In order

to ensure convergence, Roess had to leave his results in
a form that is often inconvenient to apply to experi-
mental curves. Riseman® independently developed an
essentially equivalent procedure for finding the diameter
distribution function from the scattering data from
polydisperse assemblies of spherical particles, and
Luzzati® briefly outlined a technique for calculating
the distribution of particle diameters in a polydisperse
sample containing particles of the same shape, Neither
L. C. Roess, J. Chem. Phys. 14, 695 (1946),

5 J. Riseman, Acta Cryst. 5, 193 (1952).
¢V. Luzzati, Acta Cryst. 10, 33 (1957),



Roess, Riseman, nor Luzzati attempted to analyze
-experimental scattering curves.

In this paper the diameter distribution for noninter-
“- acting assemblies of spherical particles is expressed as
E. . an integral transform of the scattered intensity. The
transform can be conveniently evaluated by numerical
¥.. techniques. The practicality of the method is tested on
‘theoretical scattering curves which can be evaluated
¢ both analytically and numerically. The procedure is
- then applied to some experimental scattering curves.

< » THEORY

General Theory of Scattering from
Polydisperse Systems

Guinier e/ al.” show that the relationship between
the average relative intensity (Fq(k)) of the small-
angle x-ray-scattering from a single randomly oriented
-particle of uniform electron density and with the single-
“particle characteristic function yo(r/a) is given by the

** expression

‘ - re sinky

(F2(h))=8V / Yo(r/ a)(—-—)41rr2dr, 1)

. ' 0 hr
where ¢ is the maximum particle diameter (that is, the
= length of the longest straight line that can be inscribed
-in, the particle), § is the difference between the electron
density within the particle and the electron density of
. its homogeneous-environment, V is the volume of the
;. particle, 4 is the reduced scattering angle 4\~ sin(6/2),
2.\ is the x-ray wavelength, and 6 is the scattering angle.
£ For a polydisperse assembly of randomly oriented
_ independent particles let p(a) be the probability that
= the x ray is scattered by a particle of maximum diame-

£ ter a. Let p(a) be normalized so that

[o " p(@da=1.

£ Then the scattered intensity F2(k) from a polydisperse
E- sample in which all particles- scatter independently
- and have random orientation will be given by:

E (k)= / dap(a)(F2(R)).

_ For the polydisperse assembly a characteristic func-
B<. tion v(r) may be defined so that :

(on,)) 27 / dmmw(sm’")n )

hr

b-where the volume of a particle with maximum diameter

L 1A, Gmnler el al., Small Angle Scattcrmg of X-rays (John
11ey & Sona_,,lnc : New York .1055), pp 19
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ais Vo @,

)= f dadtp(a)vo(r/a),

and v, the average particle volume, is glven by the;‘
expression
Vo / p(a)d*da.
0

- By Fourier inversion of Eq. (2)

- /sink
dh( 3h2p(h).
hr
This equation is now put into a different form in order:
to allow the first three derivatives of y(r) to be com-

puted by differentiation of the integrand. Rearrange-
ment gives

V:

1
G Uarwrey §

y(r)=1—r

852V

1 rWF(h)—CT /sinkr :
e e (G
wev )y Lom b T

C=lim P2 (k).
h—0

where

Then
‘ 1 sinkr
V= / o - C]———r—);[ ]

and

—1 e L
VO /o arrem—Cl @

The Particle-Diameter Distribution Function
for Spheres

" So far in this development, no restriction has been
made on particle shape. If we limit the discussion to the
scattering from assemblies of spherical particles, then?

Yo (r/a) =1—(3r/2a)+ (©*/2a%)

and

2a 2a®

'Y(f)?l_ / daa? (a)<1—_+_._

A consequence of Eq. (23) of Chap. II of Ref. 7 is s
that for 7> a, vo(r/a) =4 (r/a)=0. Therefore

2V d 'y"(r)

If
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€ xasts for assembhes of sphencal partlcles then ¥"(0)
is zero, because

VO f dap(a).

(Note that this notation uses 7 as a particle diameter,

b not a radxus) By Eq @3) -

p(r)—— / QT (1)~ C ),

o Where

‘ 4 sinkr 2
a(hf) [coshr(l———) (1————)]
2y hr w2t

Equation (5) gives the particle-diameter distribution
function in terms of an integral that can be handled
by, numerical techniques. This expression has the

= distinct advantage that no numerical differentiation is

necessary.

Computer Calculations -

T Eq. (S) is to be used to derive the partlcle—dlameter
distribution function, the sample must satisfy three

P conditions. First, it must contain only spherical par-

AT
W

ticles. Second, the scattering curve must be free of
1nterpart1cle eﬁ'ects Third, the outer part of the scatter-
ing curve must be proportloral to £7%, so that the
integral in Eq. (5) will converge.

A computer program was written to accept experi-
mental F%(k) data for scattering angles from 1 to 50
mrad in steps of 1 mrad. The computer evaluated the
1ntegral :

hmax
Po(')=1l—3; / ()=l

where /imax=47\! $in (Omax/2), and Opax is the largest
angle at which experimental data are available. In
Eq. (5), the quantity (k) =[h*F*(k)—C] was assumed

to take the form AA24Bh* for 0> 0, with the
. constants 4 and B being determined from the experi-

o o

+B-7Dy(lsx)], (1)
i where ‘ ) o :

] Lo , B (x)__zsmx Cosx sInx (8)
e R ~

mental data. [The asymptotlc behavior of F%(k) sug-
gests that this form of 8(k) is physically reasonable. |
This procedure permitted evaluation of the integral
in Eq. (5) for 5> hmax. Allowance for the contribution
of h values greater than Am.. will be referred to as
correctlon for termination error.”
It can be shown that

/ [Ah*z—l-Bh_‘]a(hr)dh———[A 1+ Do (hmax-7)

OF: SPHER}CA’L PARTICLES

)

and’ , . 7
- 4sinx 4cosx 2sinx cosx sinx
Dy(x)= —4 —
36 35 324 9x 1842
cosx - Si(x) «
—_—
18 18 -36

A numerical listing of these functions i 1s avallable from,
the authors.

For the test functions, the constants 4 and B were -
calculated by simultaneous solution of the equations -
B(h:)=Ahi?+Bhi* for two values of 4. Tests showed
that the results were insensitive to the choice of the
values of %;. -

A different method was employed to determine 4 and -
B for experimental curves, for which the value of C -
was not known. One would expect that at h=/may, -
the function 8(k)="[4*F?(h)—C] would be continuous
and have a continuous slope. Also, as y"/(0)=0,-the ,
integral in Eq. (4) must vanish. From this condltlon =
and the requirement that y(r) and 4’(r) must be con- '
tinuous at /Amex, the constants 4,-B, and C can. be
determined from the relations

hmax T
0= ] AW F? (1) — Chimaxt-A (hm)‘l-
0 .

3B hae?, (10)
iV ) = A )+ Bl C, (1)
I (x) = Ax B4 C, O
where 2= hpae— ¢, and ¢ is a small number. i
From Egs. (10), (11), and (12),
A= Er(3*— hmax®) — B2 (4*+ 3hnax) + 4Eslmas®,  (13)
B= Ey (et — %) o :
+ 3B (et P ) — 6 Ehnna®,  (14)
C= Bl =)+ B (0= )+ 2, (15)
where . o
F=— 3Bt / Caweey,
o | i

Eo= I:Z_hJerxzf‘\'f4 +4hmu4x2i6hm“6]— 17’ S :
Er=Eu’F (hmax);  2nd - Es=E¥P(@). . -

The Test Functions

‘In order to test the results of the p(r) program for st
systematic errors in the experimental data and to c}leck f

the accuracy of the numerical methods in the o(r) .~

program, theoretlcal intensity ﬁmcnons Were used fhat
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of the diameter distribution
—2 for the  Fa2(h) test functions.

riangles, squares, and cir- -
cles enote test functions
with Dpsy values of 200,
100, and 50 &, respectxvely
The abscissa shows the
reduced particle diameter
70=50(Dmax)lr, with 7
- being expressed in ang-
stroms.
—.75
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were known to yield given partlcle-dlameter distribu-
tion functions. If®

p(r)="[a™"/(n+6) Jrreori2),
where #=0, 1, 2, -- -, then

a7 (—1)» on .
W dan

x[720a—7(1+§)(1+x2)-3], an)

where x= 24/a. Therefore for n=0,

(16)

' Fuz(h)—'__I'n(h):

w

4k 4hN\3 ot
h4F02(h)—C=h4(1+— (1-1-— T
5a? a? 80
and for n=2
t C4l1fi
P h‘ng(h)—C=7—0(C1y‘5+ng'4+C3y’3+C4y’2)—1120,

- where
Cy=(14+4r%/a?), C1=48, C,=12, Ci=17, Ci;=3.

. - Diameter-distribution functions were calculated with
£ the functions Fe?(k) and Fo2(k) for several values of
¢ the constant a. When 7=0, p(r)=koe "2, where ko
L is the normalizing constant. For #=2, p(r) has a
s maximum at r=4/a= Dy, and p(r) curves were com-
—puted for the a values 0.002, 0.004, 0.008, 0.02, 0.04,

£ 8P, W. Schmidt, Acta Cryst. 11, 674 (1958).

0.08, and 0.16 A, yielding maxima in the calculated
p(r) curves at 2000, 1000, 500, 200, 100, 50, and 25 A,
respectively. The results of these calculations are given
in Fig. 1. After the curves had been corrected for ter-
mination error by the scheme outlined previously,
at no point was the error greater than 0.1%,. Figure 2
shows the contribution of each term in the termination
error when p(r) is calculated from the test function
F*(h). When diameter distributions were calculated
with this function with incorrect values of C; and C,,
there was little change noticeable in the plots of the
test function, but at small , a large error was generated
in p(r). In the F2*(h) test functions, termination error

~ is extremely large at small r, and this error accounts for

the large fluctuations in p(r), as in this range of 7, p(r)
is the small difference between two large quantities.

For the calculations with the test functions, the
differences between the computed and the expected
results were in all instances less than 0.59 and in most
cases were under 0.19;. The termination errors were
greatest at small 7 and decreased for increasing r.
The values obtained for 4 and B were found to be
quite insensitive to the choice of ¢, and the cha.nge of -
e never produced errors as la,rge as 0.29, in the cal-
culated values of p(7).

The Effect of Systematic and Random Errors
in the Input Data

In the evaluation of the merit of this method of -
determining p(r), the question arises concerning the

sensitivity of the calculation to various types of errors. -

The effect of a random error in the experimental data




" Fie. 2. The effects of

- relative values of the diame-

. the termination error terms -
- in Eq. (7) proportional to

-
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3
-

~ p(r) for the' Fe(h) test
> function with Dpa=100 .
- The values of p(r) before
- -and after correction for
' termination error are in-

~ dicated by triangles and

1 Dy(fmax-r) can be seen_ to
be negligible for r>20 4.

- Fe(h)=F*(h)[14+(N—4.5)¢]. The number o deter-
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- termination error on the

ter distribution function

————

(Relative Values)

" diamonds, respectively, and

Da(hmnx") and Dy (fmax: 1)
are shown, .respectively,
by circles and squares.
The termination’error from

P(r)

B I 1 1 1

was tested by introducing a random error in F2(h)
by defining an “incorrect” value F,2 (%) by the relation
mined the magnitude of the random error, and N is
a different random number for each value of 4. When
0=0.005, the maximum fluctuation between values

- of F2(h) is 4.5% of F2(h). Values of o producing

- 0.9%, 2.7%, and 4.5%, maximum fluctuation were used
i: with each of four test functions. For »> 80 A, the change

14
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in the computed values of p(r) was negligible even with -

4.5%, fluctuation, and the error grew as r decreased.
It was found with the F22(k) test functions that the
relative effect of random errors at a given 7 value de-
creased as Drax decreased. For example, for D= 25 A,
there were negligible errors in p(r), but for Dy.
=1000 A, the random errors in the test function caused
errors greater than those shown in Fig. 3, for which
Diax is 200 A. Different sets of random numbers were

5~ Fic. 3. The effect of
- random errors on the rela-
- -tive values of p(r) computed
~from the F2(h) test func-
tion with Dpar=200 A.
¢ Open squares show p(r)
.for no random error, and
the p(r) curves for maxi-
mum fluctuations of 0.9%,
2.7%, and 4.59, are in-
t dicated, respectively, by
.curves A, B, and C.

(Relative Values)

P(r)
+
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Analysis of Experimental Scattering Curves

The scattering curves for thrée'experimen'té.l sam-
ples,?1° which will be referred to as Ludox I, Ludox II,.
and Ludox III are shown in Fig. 4. The data were cor-

rected for slit-height collimation effects and for all
background except the scattering from the solvent

_ water. The outer parts of all the curves are proportional

to k. The effects of interparticle interference were
eliminated by diluting the suspensions until the shape
of the scattering curve was unchanged when the
concentration was further reduced by a factor of two.
The Ludox II sample was unsuitable for the p(r)
calculation, since the scattering curve was proportional
to h—* over the entire range of the experimental data,
and thus no information was available about the inner
part of the scattering curve. This behavior was due to
the relatively large average particle diameter (about
1000 A) in this sample. T
For the other two samples, the p(r) curves are shown
in Figs. 5 and 6: For both samples the calculations were
done for three different values of e. The computed
diameter distributions were found to be quite insensitive
to the choice of e. For the p(r) curves in Figs. 5 and 6,
the ¢ values were chosen to make the slope of the F2(k)
curve as nearly continuous as possible at h=/fmax, |
The p(r) plots were not normalized, since normaliza-
tion would require assumptions about the number of
particles with diameters greater than 300 A. For these
samples, computations of p(r) for 7>200 A are probably
not reliable because they depend too strongly on the
values of F2(k) at small %, where the data are quite
uncertain. '

L1 el

£ 103,

1072
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‘Fic. 4. The corrected x-ray scattering curves for the Ludox
samples. Curves A, B, and C represent Ludox III, Ludox IL,

* and Ludox I, respectively.

used with several of the test functions, in order to rule
out the possibility of an anomalous situation occurring
because of a given combination of random numbers.
For all sets of random numbers, the relative errors were

‘comparable.

“The introduction of a random error in the angular
range of the test function which would correspond to
experimental data showed that a large error in p(r)

~ would result if and only if the sum of the termination-

error terms were large with respect to the original
‘computed value of :

. 1 phmax
P°(")=;;/0 [#F2 () — Clee(hr)dh.

A _éyStefnatic continuous error such as misdefining Cy
and €, in computing the test function F 2(4) had the

* same effect as a random error; i.e., large variations in

alr) can be produced at small 7, with the magnitude of
error decreasing or 7 becomes larger. .

~ o

- nique of Sc
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Ludox |

A--0.6075474-107
B 05566914107 ",
- 0.1623519

P(r} (Relative Values)
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Particle Diameter (in,r\)

Fic. 5. Relative values of p(r) for Ludox I.

9 The Ludox samples studied were Ludox I: SM Colloide
Silica No. 3397-66 Du Pont Chemical Corporation, Ludox A1
100 um Silica Sol No. 2692-125 Du Pont Chemical Corporatior
All scattering curves were obtained on an apparatus describe
elsewhere [H. D. Bale, Ph.D.. thesis, University of Missow
(1959)] and were corrected for slit collimation eiror by the. teck
hmidt and Hight [P. W. Schmidt, and R. High

Acta Cryst. 13, 480 (1960)1. foas
1 The Ludox ITI data were obtained by R. Hight [thes
University of Missouri (1962)] B s :

-
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+.  the mean particle diameter of 70 A
f  manufacturer.

. .
. Ludox 111
3 .
; . A=-0.1253549+ 107
B= 0.40434k6- 10"
) €~ 0. 6820466
> .
k=]
=
>
2
s
=
=
ol
<19
-2
2 T 60 ) 100 120 1% 60 B0

Particle Diamefer (in A)
F16. 6. Relative values of p(r) for Ludox IIL

The values of p(r) for =20 A are not significant
because they are sensitive to errors of all types. For
the Ludox samples, the sources of these errors could
not be located. The results of the error studies on the
“test functions suggest that the Ludox I and III p()
values should be meaningful for >40 A.

In Ludox I, the most probable particle diameter was
found to be 70 A. This result is in good agreement with
given by the

For Ludox III, the most probable diameter was found

to be about 55 A, but the distribution of diameters was

found to be very broad, extending to much larger values
of r. This distribution is not inconsistent with the
manufacturer’s value of 140 A for the mean particle
diameter.

DISCUSSION -

The results of the computations of p(r) for the test

" functions and the Ludox samples suggest that this

method may be useful procedure for interpretation of
- small angle x-ray scattering data. A final judgment
. about the-method, however, will have to wait until p(r)
has been’ computed for a number of experimental
scattering curves. Further tests are now in progress.
Equation (5) can also be applied to suspensions of
particles which are not spherical. In this case, the re-
sulting p(r) curves represent the diameter distribution
of the sample composed of spherical particles that would
produce the observed scattering. If the particles in the
- experimental sample are nearly spherical, one might
B expect that the computed p(r) curve would ordinarily
" be a reasonable approximation to the diameter distribu-

— A
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_tion actually present in the sample. Care must-be -

taken in using this procedure, however, since certain
scattering curves may not-be obtainable from any
reasonable distribution of spherical diameters. Attempts
to apply Eq. (5) to these scattering curves would not -
lead to meaningful results. Suggestions of this effect
were obtained in computation of the p(r) from the -
scattering curves-from two polydisperse thoria sols, -
which electron micrographs showed were composed of
particles. shaped approximately like cubes. :

The computed p(r) curves represent the diameter
distribution that would produce the observed scattering
if the sample particles had uniform electron density.
Because the assumption of uniform electron density
neglects the atomic and molecular structure, for small 7 -
the calculated diameter distributions might not repre-
sent the actual diameter distributions in the sample. -

Under quite general conditions! the constant 4 can
be shown to be always positive. Therefore, it should
always be positive when it is obtained in a computation -
of p(r) from an experimental curve. For the two Ludox -
samples, however, the values of 4 were negative. At
present, no explanation can be given for this result.

The studies of the test functions indicate that ter- -
mination errors generate only a small error in p(r) -
when 7>40 A, if the data are known in the angular
range where the scattering is proportional to A4
Unfortunately, however, experimental data are often
uncertain in this region, and these errors may limit
the accuracy with which the constants 4, B, and C;and
thus, p(r) may be determined. T

In a study of polydisperse sols, the parameters usually
measured, such-as average specific surface or molecular
weight, represent averages which give little information ~
about the deviations from average values. The diameter- N
distribution function should provide useful information
about the distribution of particle dimensions, and with
this information a more complete description of the
sample will be possible than would otherwise be
obtained. ‘
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