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Abstract. An ultrasound imaging device that uses the
wavelet transformation as the image reconstruction
algorithm has been described in the first papers of this
series. In this paper we describe a digital fiitering
technique which improves the practicality of the device
by easing the constraints on sound generation, allowing
the use of simple and inexpensive sound transducers and
drivers. The extent to which filtering can compensate
for poor control of the generated sound is investigated
through simulation and experiment.

INTRODUCTION

The previous papers in this series describe an ultrasound
imaging device with an image reconstruction algorithm
based on the wavelet transform [Letcher 3,4]. Briefly,
the sound pulse directed into the sample has the shape
of a "wavelet." The echo returned from the sample is
transformed to reconstruct the acoustic impedance of the
sample along the path of the sound puise. The
effectiveness of the algorithm depends on the accurate
production of sound pulses having the correct shape, one
which the transducer is not naturally disposed to
produce. The approach taken in the work cited was to
analyze the impulse response of the transducer and pre-
distort the transducer’s drive signal to get the correct
output. The implementation requires high-speed, high-
voltage amplifiers, which are costly.

In this paper we investigate a different approach that
requires only the simplest hardware -- an inexpensive
transducer and an impuise driver. The sound puise
produced is a distorted wavelet, and the echo obtained
from the sample is likewise distorted. The echo signal
is digitally processed to remove the distortion and
produce the echo signal that would have been received
had the transmitted sound pulse been a faithful
reproduction of a wavelet. As a result, we can use the
wavelet transform to reconstruct the image while
reducing the cost and complexity of the hardware.

The organization of the paper is as follows: In the
section below we describe the mathematical model of
the experiment and the requirements for the digital filter
which removes the distortion. The next sections contain
filter design algorithms and criteria for the stability and
performance of the filters. A recursive filter is used in
a computer simulation, and non-recursive filters are
designed to correct for distortion in an actual
experiment.

MATHEMATICAL MODEL OF THE EXPERIMENT

We will concentrate on a one-dimensional ultrasound
experiment which measures the acoustic impedance of
the sample along a line. A focused pulse of sound is
directed into a sample and the reflected sound signal is
detected by a transducer and recorded. Sound is
reflected from the interface between materials of
differing acoustic impedance. The echo signal is a
superposition of delayed versions of the transmitted
pulse; the amplitude, phase, and delay of each reflection
are related to the natre and posidon of the
corresponding interface.

In our mathematical model of the experiment we shall
assume that all reflections are due to weak
discontinuities in impedance (on the order of a few
percent), and hence that there are no muitiple reflections.
We also assume that the sound velocity in the sample is
constant and that there is constant absorption in the
sample. These assumptions are reasonable for a
biological sample. We also assume that the interfaces
are discrete, and hence we model continuous (extended)
interfaces by a sequence of weak discrete ones.

All signals are treated digitally, so we express signals as
sequences of samples of the analog signal taken at
regular intervals. We will assume that the sampling rate
is high enough to clearly resolve the sound signal.
Sequences are denoted by bold face letters, and the
elements by subscripted letters. We use the convention
that all elements with negative subscripts are zero and
that finite length sequences may be padded by zeros o
infinite length in both directions.

The wavelet transform is an algorithm for approximating’
a function by a superposition of functions having a
"model" shape, called the wavelet. These basis
functions are all related by affine transformations of the
time variable, which is to say that their graphs differ
only by horizontal translations and scalings. If the
wavelet shape is carefully chosen, the basis functions are
mutually orthogonal (the integral of the product
vanishes) and the transform is "fast,” i.e. the amount of
computation required to transform a sequence of length
N is proportional to N logVN. The result of the
transformation is the sequence of coefficients of the
wavelet basis functions in the approximation. We will
use a non-orthogonal basis of wavelets, described
elsewhere [Letcher 4]. The transform with respect to



this basis is related to the transform with respect to the
orthogonal basis by multiplication by a sparse matrix,
and hence is also "fast.”

Let s = (S, .. .S be the transmitted signal and r =
(oe;0.L0,11500,...) be the received sound signal. The
acoustic impedance of the sample along the line probed

by the sound pulse is characterized by a sequence x, .

which relates the transmitted sound to the echo by
[Letcher 3]:

r, o= 2}: %, (1a)

that is, ,
< 1b
r = s x*xx (1b)
where "*" is the convoludon operator, defined by
Equation (1a).

The wavelet transform using the non-orthogonal basis
generated by the wavelet s is in effect a deconvolution
(s*)! which recovers x from r. The acoustic impedance
of the sample can be computed from the sequence x. If
W() and W,(-) denote the wavelet transform with
respect to the orthogonal and non-orthogonal bases,
respectively, then we have x = W (s*x) = W, (r).

In general, one expects that the transmitted sound
sequence s will not be a wavelet. We shall think of s as
a distorted version of a wavelet sequence w. The
advantage of this point of view is that we never have to
generate a sound pulse shaped like a wavelet. We will
assume that there is a (reasonably short) distorting
sequence d so that

s = dxw. 2

This refation works well for the inexpensive transducers
that we used in our experiment. Henceforth all wavelet
transforms will be taken with respect to the bases
generated by w.

In terms of w, the received signal is r = d*w*x. We
propose to take the distortion into account by convolving
r with a filter sequence f that has the effect of the
deconvolution (d*)!. Subsequent wavelet transformation
will then recover the sequence x with no distortion.

FILTER DESIGN

Given the sequence s, we must find sequences w and f
that either exactly or approximately satisfy the relation
f * s = w and so that w generates a wavelet function.
Equivalently, we also find a sequence d so that the
relatons s =d * wand f * d = I hold, where I is the
convolution identity (...,0,0,1,0,0,...).

The basic mathematical problem is to recover the
sequence u given data d =(d;, ... .[d) and v=d * u.
Solving for y; in the relation

AEEDY d; u )
70

yields the recursive relations

a, = (Ydy (v, - lej ). @

These are recursive because w, cannot be computed
without first computing u,,. Equation (4) describes the
action of a recursive filter, and is equivalent to
convolving v with an infinite-length sequence. We shall
denote this operation by (d*).

In general there is no sequence f of finite length so that
f*v = u, or equivalently f*d = d*f = I, is satisfied
exactly. A sequence that approximately satisfies these
relations will be denoted d'. To support our convention
that elements with negative indices are zero, we will
when necessary substitute for I a sequence with only one
NONZero entry, occurring at some non-negative index /,
called the lag. The sequence d' is also known as a
spiking filter [Robinson and Trietel 1]. While this
"inverse" notation is convenient, one must remember that
d is not unique. However, given a fixed length for the
inverse sequence and a fixed lag, there is a unique
sequence which best inverts convolution with d in the
least-squares sense. A simple formula for these spiking
filters is found in [Robinson and Trieitel 1]:

dl=A"1yg, ®
where
4 = Dby (©6)
and
g, = d, @)

Given these formulas for (d*)"! and d’', there are several
algorithms for recovering x from r and s. The first step
is to pick a wavelet w that generates an orthogonal basis
for the wavelet transform W, so that W, is fast and x =
W, (w * x). To obtain the sequence w * X, one may
first calculate d as W, (s), (w*)" (s), or w! * s; then
compute either (d*)!(r) or d* * r. The intermediate
result d may be avoided by computing the deconvolution
of d as either w * (s*)* or w * s*. Finally, one may
use linear combinations of spiking filters to construct a
filter f that approximately satisfies f * s = w, which is in
effect d'. This approach tends to be the most
straightforward one.

EFFECTS OF FILTERING

While the recursive filter is an exact deconvolution, it °
cannot always be used. Implementing the recursive
filter (d*)! is equivalent to solving a nonhomogeneous
difference equation



v = (3 d B ®
j=0

where B is the "backshift operator” (Bu), = u,,. The
homogeneous equation 0 = (Xd,B’)u has exponendally
growing solutions if the characteristic polynomial P(t) =
Edj ¢ has any nonzero root inside the unit circle [Fuller

2]. These solutons give rise to numerical instabilities -

which render the recursive filter impractical in these
cases. Thus the recursive filter cannot be used unless w
can be chosen so as to give P(t) the desired properties.

The non-recursive convolution filter is stable, but gives
only an approximate déconvolution. The general effect
of a well-designed least-squares filter is that of a
deconvolution with "ripples” added. This is not
stochastic noise, but rather a reflection of the fact that
(d* * d) - I is not identically zero. For the signals
encountered in our ultrasound experiments, with fiiter
length equal to the wavelet length, the ripple amplitude
was roughly ten percent of the signal amplitude. This
amplirude decreases with increasing filter length, and
also depends on the wavelet shape.

Although the mathematical model assumes that the
deconvolution filter will be applied only to sequences
that result from convolution, in practice there will be
noise in the signal that does not have this origin. It is
therefore of vaiue to know the effect of the filter on
noise. This is described by the squared gain of the
filter.

Suppose u is a mean zero covariance-stationary random
sequence, E is expectation, and v = u * d. We define
the autocovariance sequence of u, ¥,, to be

(v = E(; Uiy, 9

and the spectrum of u, S (f) to be

5,00=Y" (v)ep[-2mikf ],-—21—51"5%. (10)
k

f is the frequency in units of 1/T where T is the interval
between samples. The spectrum S (f) can be interpreted
as a decomposition of the variance of u, because the
spectrum 1is large over those frequency bands which
account for a large fraction of the variation of u. Then
the ratio S (f)/S,(f) indicates the amplification of the
convoluton filter d at the frequency f. This ratio, called
the squared gain of the filter d at frequency f, can be
computed directly from the sequence d:

NP = 13 dexpl-2mikf 1% (1)
. k
COMPUTER SIMULATION OF EXPERIMENT

To verify the algorithm, we performed a computer

simulation of the ultrasound experiment. The results are .

depicted in Figure 1. The sequence x was chosen to
correspond to the sample impedance given in Fig. la
and the transmitted sound is shown in Fig. 1b. The
Haar wavelet was selected as the basis for the wavelet
transform. Without filtering, the reconstructed image of
sample impedance shows considerable degradation (Fig.
1). We implemented the recursive filter (d*)*, which
was stable, before the wavelet transform to produce the
image in Fig. 1d. The distorton is clearly reduced by
the filtering. A noisy experiment was simulated by
adding a noise signal to the received signal. The noise
amplitude was one-tenth the signal amplitude. The
reconstructed impedance is shown in Fig le.

DESCRIPTION OF EXPERIMENTAL APPARATUS

An apparatus was assembled to verify the performance
of the reconstruction algorithm on experimental data. A
"phantom” constructed from parallel blocks of wax 6.35
mm thick held approximately 25 mm apart by spacers
was immersed in a beaker of water. A Panametrics 2.5
MHz V305SU F=3" ultrasonic transducer, connected to
a Panametrics SO0PR pulser-receiver, was aimed at right
angles to the wax layers so that echoes produced at the
wax-water interface would return to the wansducer.

The received ultrasound signal was led to a custom
circuit board which, when tiggered by a sync pulse
from the pulser, amplified the signal, sampled it at a
20MHz rate, performed analog-to-digital conversion, and
stored the resulting data in a cache memory. The analog
portion of the circuitry is identcal to that on the Sony
CXA 1296P PCB evaluation board, built around a Sony
CXA 1296P eight-bit analog-to-digital converter. The
data was later upioaded to a PC-compatible computer
equipped with a Cyrix 486 DLC processor running at
33MHz, a Cyrix EMC 87 coprocessor, an ATI VGA
Wonder 512 graphics adaptor and a NEC 5FG monitor.

As a result of less-than-complete shielding, noisy power
supplies, excessive cable lengths, etc., the experimental
data contained noise. The noise was reduced by
averaging the data from 350 separate pulses.

EXPERIMENTAL RESULTS

The results of the digital filtering algorithm on the
reduced-noise data set are shown in Fig. 2. The gain of
the analog stage before the A/D converter was adjusted
to make the first echo amplitude nearly full-scale.
Because the interfaces in the phantom were sharp, each
echo received should have had the same shape as the
transmitted sound signal. Figure 2a shows a
superposition of the six echoes received, rescaled to
have the same amplitude. The interval between samples
is 50 nsec. The variations between the echoes can be
taken as a measure of the total noise in the experiment.
One of the echoes was used as s, the transmitted sound
signal, in the design of a non-recursive convolution filter



of length 60. The echo after filtering, shown in Fig. 2b,
is seen to be a Haar wavelet with very little distortion.
Figure 2c shows the complete echo sequence after
filtering and wavelet transformation. The decreasing
amplitude of the echoes is due to the absorption in the
wax, and could easily be accounted for in the image
reconstruction algorithm. The reconstructed acoustic
impedance of the sample (without correcting for
absorption) is shown in Fig. 2d. Note that the noise in
the signal has an effect on the performance of the
algorithm. The squared gain of the filter used, shown in
Fig. 2e, indicated considerable amplification at high
frequencies.

The same filter was the# applied to the data without the
benefit of averaging to reduce the noise. The result,
seen in Figure 3, is significantly degraded and clearly
shows the amplified high frequency components of the
noise.

SUMMARY AND CONCLUSIONS

In this paper we have described a modification of the
reconstruction algorithm based on the wavelet transform
which does not require that the generated sound have the
shape of a wavelet. The essential feature of the
modification is the implementation of a deconvolution
filter which in effect converts the received sound signal
into a superposition of wavelets. The advantage of this
approach is that the numerically efficient wavelet
transform is retained as the basis for the reconstruction
algorithm, but the requirement for high-accuracy sound
generation is eased.

The deconvolution filter may be implemented recursively
or non-recursively. The recursive filter gives excellent
results and is very efficient numerically, but suffers from
instability if the corresponding characteristic polynomial
has unstable roots (lying outside the unit circle).
Generally speaking, if the peaks of the sound signal are
decreasing in amplitude, the recursive filter will be
stable.

The non-recursive filter is easy to compute, reasonably
fast, always stable, and gives excellent results on
noiseless signals. However, the filters tend to be
sensitive to noise, and to amplify the higher frequencies
of the noise in particular. In theory, a well designed
medical imager can have a very low noise level, since
there is no naturaily occurring noise in biological tissue
at these frequencies. The algorithm described in this
paper would work very well for such a device.
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Figure la: Simulated sample impedance
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Fiqg. lE: Reconstruction (no filtering)
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Fig.le: Reconstruction of noisy signal

Figure 2b: Echo after filtering
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Figure 1lb: Simulated transmitted sound
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Fig.ld: Reconstruction with filtering
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FPigure 2a: Superposition of echoes

Figuré 2e: Squared gain of filter
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Figure 2c: Reduced-noise data after filtering and wavelet transform
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Figure 2d: Reconstructed sample impedance
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Figure 3: Filtered noisy data
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