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ABSTRACT

An ultrasound-device image-reconstruction algorithm has been de-
scribed previously that uses orthonormal wavelets as the basis of a
transform space. The transform algorithms make it possible to ana-
lyze the reflected ultrasound signal from a sample to produce a map
of one of its internal properties, the acoustical impedance. Conven-
tional wavelets do not exhibit translation invariance, the lack of which
ofttimes generates nonzero expansion coefficients for wavelets of
lower sequency than the transmitted signal. By a transformation of
basis to a set of functions which exhibit a form of translation
invariance the aforementioned problem is removed. However, the
new functions are no longer orthogonal. An algorithm is described to
perform this transformation extremely efficiently. Also described is an
algorithm to unsmear the image due to the fact that the transmitted
signal may not be a single wavelet but instead is a short sequence
(linear combination) of wavelets. The coefficients of the array used to
deconvolve the signal are determined by performing a forward wave-
let transformation on the transmitted signal itself. © 1994 John Wiley &
Sons, Inc.

I. INTRODUCTION

In the previous article in this series [1] it was shown that by
sending a finely focused beam of sound into a body which
consists of a single wavelet, it is possible to use the wavelet
transformation to reconstruct maps of the acoustical impe-
dances within the body from the received time series which
are digitized values of the reflected sound. Signal conditioning
was performed in the previous article to prevent the wavelet
transformation from calculating nonzero expansion coeffi-
cients for wavelets of lower sequency than any that are
present in the transmitted signal. This article presents a
technique to correct the results of the wavelet transformation
on data on which conditioning has not been performed. As
will be shown, this doubles the resolution of the imaging
device.

Placing stern constraints upon the shape of the transmitted
wavelet (which was done in the first article) may not be
practical due to variations in parameters of commercially
available transducers, or the complexity of the circuitry re-
quired to implement the precise pulse shaping. It should be
possible to measure the response of any transducer and
employ techniques akin to inverse filtering to correct the
received signal to become that which would have been re-
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ceived had the transmitted signal been a single wavelet. This
article presents one such technique. The next article in this
series will deal with a number of such techniques (deconvolu-
tion) in detail.

Il. ORTHONORMAL WAVELETS

Given a positive integer M, consider a set of numbers {C, }
where C, is nonzero for k=0,...,M—1 and C, =0 other-
wise. We may also consider the scaling function defined by the
dilation equation

M-1
$0= 2 Cep(2x— k). 1
=0
Using this scaling function, a wavelet may be defined thus:
M—1
W)= 2 (-1)'C,¢(2x — 1+ n). )
n=0

If the values of the set of coefficients {C,} are correctly
chosen, then it can be achieved that

f d(x)dx=1, 3)
f W(x) dx =0, 4)
[Iwer ax=1, ®)
f d(X)W(R'x —k)dx=0, jkeEZ, (6)
and
f WE)W(2'x — k) dx = 8,8,,, kEZ. (7)

The values of the sets of coefficients are far from arbitrary.
It is found that M is an even number, and for M =2, the only
solution is where C, =1, C, =1, and ¢(x) =1 when 0<x <
1, ¢(x)=0 otherwise.

For M =4, the only solution is where

C0=(1+\/§)/4, C,=(3+V3)/4,

C,=(3-V3)/4, and C,=(1-V3)/4.
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When M =2, the Haar wavelet (called W,,) is produced and
when M =4, the D, (named in honor of Ingrid Daubechies)
wavelet is generated. Other wavelets exist for M =6, 8, etc.

Ill. L WAVELETS

For the purposes of this imaging device it is preferable to
employ a set of basis functions, called L wavelets, which
consist of the scaling function, the N/2 highest sequency
wavelets, and (N —2)/2 other functions which are translates
(with displacement 1/N) of the first N/2 — 1 highest sequency
wavelets. The new functions are placed halfway between the
N/2 functions. This is shown in Fig. 1 for the Haar wavelet
and the M =2 L, wavelet. The subscript refers to the fact that
for the wavelet shown, M has the value of 2.
If f represents a signal, then it can be represented by

fszIBH szBL > (8)

where W/, is a row vector consisting of the Haar wavelet
functions and W/ is a row vector consisting of the L-wavelet
functions. W/ is a row matrix which is the transpose of the
column matrix W,. The array B, is a column vector of
expansion coefficients calculated by the wavelet transforma-
tion. The array B, is the set of coefficients that the wavelet
transformation would have produced had the basis functions
been L wavelets.

The Haar Wavelet

Utilizing a space spanned by N basis functions (Haar
wavelets), the basis functions are defined:

(Wy),=H,=¢(1~-x) (€))

and for n=2, ..., N we define
(W), =H,=W,(k-2x), (10)
where j=0,...,(log, N—1), k=1,...,2" and n=k +2".
Therefore n takes on the values of all positive integers

between 2 and N; i.e., n=2,...,N. The L wavelets for
M =2 are defined in a similar manner. That is,

(W), =L, =é(1-x) (11)
and
(W), = w(2 —2vev i), (12)

where n=2,...,N.

The set of N functions {W,},n=1,..., N, made up of
¢(1 —x) plus N —1 functions W(k — 2’x) forms a basis for a
space so that any reasonably well behaved function f can be
accurately expressed as a linear combination of the basis

The L-Wavelet for
M=2and N =16
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Figure 1. Plots of the amplitude of the Haar wavelet and the M =2, N = 16, L wavelet as a function of time.
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functions. That is,

f= ﬁ bW,. (13)

The function f is sampled at N evenly spaced points on the
interval [0, 1] thereby producing an array F. The wavelet
transformation described in the previous article of this series
[1] calculates the N-point array B from the N-point array F so
that (B), = b,,.

Other L wavelets are possible for all even values of M and
for all values of N as long as log, N is a positive integer.
Notice that the L wavelets are not orthonormal. That is, the
requirement of Eq. (7) is relaxed.

IV. L TRANSFORM
In the imaging device contemplated herein the B,, arrays are
calculated from the received ultrasound signal. We now wish
to transform bases so that the reflection coefficients refer to
the L wavelets. By examining Fig. 1 it can be seen that this
will double the resolution of the imaging process as N —1
reflection coefficients are calculated rather than N/2 as was
calculated before.

If we premultiply Eq. (8) by W,, and integrate over all x,
we have that

B,=W,-W/B, =DB, . (14)
Notice that W, ~W,T, =1, the unit matrix, because the Haar
wavelets are orthonormal. One can multiply Eq. (14) by D”
and define a matrix S=D’D so that

DB, =D'DB, =SB, . (15)

S is positive definite; therefore there exists an orthogonal
(unitary) matrix U that diagonalizes S. That is,

Usu’=s,, . (16)
Since U is orthogonal, UU" =U"U=1, so
D'B,, =U"USU'UB, =U"S,UB, . 17
Premultiplying both sides of Eq. (17) by U,
S,UB, =UD’B,, . (18)
So,
UB, =S,'UD'B,,, (19)
and finally we may define
B, =[U"S,' UD"|B,=LB,,. (20)
In short, L is the inverse of D. The matrix D is determined
from the properties of the W,, and W, functions, alone. These
do not vary; therefore D is calculated only once and L is
calculated (only once) from D. Many zeros exist in the matrix

L; therefore it is possible to generate computer code that
carries out only the useful multiply and add operations of Eq.

(20), thereby producing a sequence of instructions in which
none of them is unnecessary. This is to say that Eq. (20) has
been extremely efficiently coded. This process shall hence-
forth be called the L transform.

The orthogonal wavelet expansion coefficients, the values
of which are held in the array B, are calculated from the
received sound signal F by the algorithms described in the
previous article of this series [1]. Equation (20) is then used to
calculate the L wavelet expansion coefficients, held in B,
from B,,.

V. CALCULATION OF ACOUSTICAL IMPEDANCES
FROM THE L-WAVELET EXPANSION COEFFICIENTS

In an ideal experiment, a perfect inverted Haar wavelet is
produced by the transducer; that is, the amplitude of the
sound produced over time is expressed by the equation for the
Haar wavelet [given by one of the functions given in Eq. (11)
or Eq. (12)] which is inverted by multiplying by —1. This
inversion is equivalent to a time reverse of the wavelet and is
necessary because as this signal is reflected from a boundary
in the experimental sample, and second lobe (which is now
positive) will be received first and properly interpreted as a
(positive) Haar wavelet.

The width of the entire wavelet (both lobes of the wavelet)
is defined to be 2T. If an A scan desired is to produce 256
useful points in the image, then the useful period (the time
over which useful data are received) is 256 T, expressed in
seconds. The width of the scan D,, is expressed as the velocity
of sound, v (~1.45x10° cm/sec multiplied by the useful
period 2567, which is 1.856 X 10’T and divided by 2 (as a
reflection must traverse a length twice). The sequency of the
wavelet is 1/(2T). By waiting for an amount of time =hT
before the scan begins, then the location of the left-hand side
of the A scan is located at D, = hTv/2. The right-hand side of
the A scan is located at D, = (h +256)Tv/2. Again, D, =
D,— D, =128Tv.

In practice, it is highly desirable to oversample the re-
ceived signal; that is, if possible, at least ten data points are
accumulated for each lobe of the Haar wavelet. This is
difficult to achieve since for a 1-MHz Haar wavelet, the
sampling rate of 20 MHz is required. Nevertheless, when the
received time series is reduced to the array P, then the values
of the received series are averaged over the time period of
one lobe of the wavelet. If oversampling is performed by an
amount N, samples per array point, then the received signal
(now held in an array W) is used to calculate the values of the
received signal P by the following program fragment:

DO 11=1N
P(I) = 0.0
ISTART = (I — 1)*NPTS
DO 1 J=1,NPTS
1 P(I) = P(I) + (W(ISTART + NSTART + J)/
FLOAT(NPTS)

N has been given the value of 256, NPTS is the oversampling
factor, N,, and NSTART is the delay to select the portion of
the signal to be analyzed.

If the transmitted signal is a pure Haar wavelet, P=F; if
not, a step is added to calculate F from P as given in the
section on multiple wavelet transmission below.
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In an ideal experiment using a sample (phantom) consist-
ing of a single boundary between materials with acoustical
impedance Z, and Z, then the received signal will be a
wavelet with amplitude Q(Z, — Z,)/(Z, + Z,). The constant
of proportionality Q depends upon many things; however, it
will be arbitrarily adjusted by varying the gain of the input
amplifier so that the maximum signal received is with the
bounds of the device analog-to-digital converter so that the
range is not exceeded (which produces clipping) or is not
enough (which hurts the signal-to-noise ratio). Once the value
of Q is known, then the amplitude of the signal (which is the
value of one of the BL array, the index of which corresponds
to the depth of the boundary) is calculated and the array V of
acoustical impedances may be calculated using the program
fragment:

BAVG = 0.0
DOS5I=2N
BAVG = BAVG + BL(I)
5 BAVG = BAVG/FLOAT(N — 1)

V(1) =1.0

S=V(1)

DO61=2N

BX = BL(I)

BX = BX - BAVG

$=S5*(Q+BX)/(Q - BX)
6 VI)=S

Any good optimizing compiler will recognize that the vari-
ables O, BAVG, S, and BX can be register variables, so this
program fragment requires only N memory reads (from BL)
and N memory writes (to V) after the values of Q and N have
been loaded.

VI. USE OF SINGLE SINUSOIDS IN THE PLACE OF
HAAR WAVELETS

The power spectrum of a signal is the Fourier transform of the
autocorrelation function of the signal. For a single Haar
wavelet (or any multiple thereof) the spectrum is unbounded.
This makes a Haar wavelet impossible to generate exactly
because no transducer is capable of generating extremely high
frequencies. The Fourier transform of a regular square wave
(the equivalent of a regular sequence of Haar wavelets) is also
unbounded.

The question has been asked, what if the Haar wavelet is
replaced by a single sinusoid, a sine wave of exactly one cycle,
zero otherwise? A sequence of these (with no gaps) has a
Fourier transform with expansion coefficients of only one
frequency. A good sinusoid is what a typical ultrasound
transducer is comfortable in producing. So, what would be the
change in the procedures already introduced: notably, is the
direct average of the oversampled signal still appropriate and
accurate? To partially answer this question, a test data set was
calculated and placed in the array W consisting of positive,
then negative, sinusoids of amplitude 1.0 with 11 times over-
sampling [the sinusoid is defined W(I + K):= = sin(2#71/22)
for I=0,...,22]. The first sinusoid was placed at point 10
with sign +1, the next at point 10+ 111 with sign —1, and
repeated throughout the interval of the 4096-point array with
a spacing of 111. This array was subjected to the calculation
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Figure 2. Plots of the calculated received signal, L-wavelet expan-
sion coefficients, and the calculated acoustic impedance for the test
signal described in the text.

processes described throughout and the results are displayed
in Fig. 2. Notice that the plot of calculated acoustical impe-
dances V is the square wave that we had expected, even
though the sampling and average took place over all possible
displacements of the sinusoids.

VIl. MULTIPLE WAVELET TRANSMISSION

Oftentimes, it is impractical to use a pure (single) wavelet as
the transmitted signal that is used by the imaging device.
Instead, the signal produced by the transducer is a very short
sequence of single wavelets of decreasing magnitude. That is,
the transmitted signal is given by

T=2 d,(W,),.,. m<N, (21)
n=1

where k is a number so that (W, ),,, is the first value that is
nonzero.

The received signal from any sample (=P) can be con-
verted to a signal F which is that which would have been
obtained had the transmitted signal been a single wavelet.
This is equivalent to saying that

3

F= d,n(wL)n+k =(WL)1+k (22)

n

as d, =1 and all others are zero.

The process of calculating F from T is given the generic
name deconvolution. This is a complicated subject and will be
addressed in detail in the next article in this series. For now it
is only necessary to say that in a practical imaging device, a
received signal T is obtained from a single sharp discontinuity
in acoustic impedance in a phantom experimental subject
consisting only of layers of water and layers of wax. In this
experiment, the beam of sound is made to strike the layer
perpendicular to the surface. The wavelet transformation is
applied to the received signal and the B array of the transform
gives the values of d, directly. It can be seen that

d,=(B),./(B),.,, (23)

where -1 + k is the first element which is nonzero and n =



1,...,m and where m < N. An array D may be defined so
that (D), =d,,n=1,...,m. By definition, d,=1.0. In
order to calculate the deconvolved signal to be contained in
an array F from the received signal contained in an array P
and using an array D calculated by the process, one may use
the simple deconvolution algorithm shown by the FORTRAN
program fragment:

DO21=1,N
F(I) = P(I)
DO2J=2M

2 P(I+J-1)=PI+]-1) - (DJ)*F())

Vill. EXPERIMENTAL RESULTS

The equipment utilized in acquiring and analyzing the sound
data reported herein consists of three parts. The first com-
ponent is a commodity PC class computer equipped with a
Cyrix 486DLC microprocessor and a Cyrix EMC 87 coproces-
sor, each run at 33 MHz. The image display is provided by an
ATIVGA Wonder 512 graphics adapter attached to an
NEC 5FG monitor. The second component is a Panametrics
500PR pulser-receiver connected by means of a single coaxial
cable to a Panametrics 2.5-MHz V305SU F =3” ultrasonic
transducer. The same transducer is used for sending and
receiving. The third component is comprised of circuits espe-
cially built which were to accept the received sound signal,
amplify it, then sample it by means of a Sony CXA 1296P
analog-to-digital converter. The digitized data are fed to a
Fujitsu MB81C78A-35 static RAM. Additional circuitry is
provided to interface the electronics to the ISA bus in the
computer.

The data collection circuitry is controlled by a latched
fedback memory finite-state engine [2, 3] which is operated at
40 MHz. Only two signals lead from the pulser-receiver to the
interface electronics: (1) digital synchronization signal, which

is used to report that a wavelet had been generated, and (2)
the received analog sound signal. Upon receipt of the synch-
ronization pulse, the interface circuitry samples the analog
signal at the rate of 20 million samples per second for a
duration of either 4096 points or 8192 points (1 point =
5% 10~ *sec). This provides for ten times oversampling or 20
points for the duration of the wavelet. The input amplifiers in
the interface circuitry are identical to that which is found on
the Sony CXA 1296P PCB evaluation board, which is com-
mercially available. The software for image capture, image
reconstruction, and image display were written by the author.
This was optimized to take advantage of the advanced fea-
tures of the Cyrix EMC coprocessor. The time required to
generate the wavelet and acquire the time series for analysis
was always less than 2 ms. Image reconstruction is performed
in approximately this amount of time.

Two phantoms were constructed by separating and holding
three layers of jeweler’s carving wax approximately 0.25-in.
thick. These were placed approximately 1 in. apart. This
assembly was placed in a beaker containing previously boiled
water to which was added a drop of strong dishwashing
detergent. The treatment of the water was necessary to
prevent the formation of small gas bubbles on each interface
layer and to make sure that the wax surface, although smooth,
was properly wetted. Signals of received sound were re-
corded, stored, and analyzed. Wax and water were chosen
because they approximate the acoustic impedances of fat and
water in the human body, respectively.

To compare the results obtained by using the technique
reported herein with older techniques, the phantom used in
these studies was also imaged using an Acuson instrument,
which is in use for medical purposes. The results of this study
are shown in Fig. 3. The results of the new technique are
shown in composite in Fig. 4. In the latter figure, a plot of the
sampled sound signal, F, the L-wavelet expansion coeffi-
cients, BL, and the calculated acoustic impedance V are

Figure 3. The image produced by an A cuson medical imaging device using the experimental wax/water phantom described in the text.
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Figure 4. Plots of the 350 sample average of the received sound signal obtained using a wax/water phantom. Shown are the received signal,
F, the L-wavelet expansion coefficients, and the calculated acoustical impedence V. Also shown is a density plot of the values of V shown on the

same scale.

plotted against time. The image at the top of the figure is a
density plot of V using scaling factors chosen by the author.
No attempt was made to deconvolve the received signal due
to an imperfection in the transmitted wavelet. This imperfec-
tion produced the overshoot in the calculated value of V at
each boundary. This subject will be dealt with more fully in
the next article in this series [4]. No attempt was made to
account for absorption. Signal averaging of 350 samples pro-
duced this essentially noise-free image. Notice the sharp
boundaries of the almost square wave for the acoustical
impedances for the wax and water.

Noise is the limiting factor in the accuracy of this technique
and great care should be exercised to keep the signal-to-noise
ratio as large as possible. Oversampling at more than a factor
of 10 seems unnecessary (except for further noise reduction).
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