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ABSTRACT

Many imaging devices have been constructed that use fourier trans-
form techniques for image reconstruction as well as for image
analysis. The basis functions in the fourier transform space are
sinusoids. These are not localized. Therefore it should not be expec-
ted that highly localized behavior of a signal be characterized well
using functions distributed evenly throughout the interval of the
integral transform. Also, the phase cancellations of a conventional
impulse signal are not handled well by fourier techniques. On the
other hand, the basis functions of the wavelet transformation are
highly localized, i.e., these exhibit compact support, yet are orthonor-
mal. The multispectral decomposition algorithm of the wavelet trans-
formation is used to analyze the signal returning from the reflections
of a single ultrasonic transducer with a focused beam and operated
in the focal zone. The choice of frequency depends upon the
mutually antagonistic factors of penetration (af %) and resolution
(af). The signal sent into the sample should not be the impulse
response signal used in conventional devices; rather, it should be a
time-reversed replica of a single or a linear combination of the most
highly localized basis function wavelets. The returning signal is a
sequence of translates of the wavelets plus perhaps some lower-
resolution wavelets. The translations are proportional to the time of
flight of the signal. The wavelet transformation is superb at dis-
criminating the population of each of these translates which is
identically the A-scan signal. The transmitted signal, which is a
time-reversed single wavelet or a linear combination of wavelets, is
not easy to produce. Inexpensive ultrasound transducers have reso-
nances which make it difficult to produce any desired wave form.
Wavelet shape is far from arbitrary. Precise wave shaping is per-
formed by measuring the impulse response function of the trans-
ducer; then, the desired wave shape is convolved with the inverse of
the measured impulse response function of the transducer. This
produces the signal to be presented to the pulse generation circuit.
Care is taken to damp the impulse response so that there are no
zeros. The received signal is sampled at an even rate which is
carefully chosen to match the time delay of one wavelet translate to
the next. B-scan, C-scan, and volume imaging are easily accom-
plished using a sequence of A-scan data, all by conventional tech-
niques. A single A-scan requires less than 2ms to perform and
reconstruct with a high-speed arithmetic unit which was designed in
conjunction with this work and is now commercially available.

I. INTRODUCTION

Conventional ultrasound imaging devices fall into a number of
categories. Some of these are used to study systems containing
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boundaries where the acoustic impedance Z of a material
(Z = pv, where p is the density and v is the velocity of sound
in the material) [1] differs greatly from one material to the
next. In such a system, the reflections are strong and multiple
reflections are common. In systems such as living tissue the
difference of impedance from one material to the next (such
as from muscle to fat) generate weak reflections. This article
deals only with the latter such system.

An A-scan is a map of the boundaries that is generated by
directing a thin ray of sound into a material and recording a
digitized time series of the reflections of the sound. The usual
case is to subject a piezoelectric crystal to a single large
voltage spike (~200volts for a duration of tens of
nanoseconds). The crystal deforms along the electric field and
because of the contraction and dilation of the crystal produces
sound at one end of the crystal. The other end is held firmly
by a sound-absorbing material such as a plastic with tungsten
particles imbedded in the plastic.

Although the impressed voltage is quite sharp and well
defined, the crystal is not particularly cooperative in tracking
the applied voltage. What is seen are multiple oscillations that
usually dampen out in four or five cycles at a frequency
determined by the physical characteristics of that particular
crystal (crystals are commercially available throughout the
1-50 MHz range that will probably be employed for medical
imaging purposes). The crystal is normally supplied with a
lens to produce a focused ray of sound with a sharp pattern
only a few degrees wide. The characteristics of the lens
determines the focal length F. The transmitting crystal may be
and usually will be used as the receiving transducer. The
useful range of the fine focus is from about 0.66 F to 2.0 F.

A variety of schemes exist to move the beam of sound
between a sequence of A-scans, so as to produce a B-scan, a
two-dimensional map of what the A-scan performs in one
dimension. The C-scan is a map in a plane orthogonal to the
A-scans and is generated by straightforward computer soft-
ware techniques. Any scheme that is employed to extend
conventional ultrasound may be employed with the device
reported herein. Therefore the use of mechanical means to
move the transducer or the use of phased arrays of transduc-
ers are generally used; these will not be discussed here.
Rather, we will concentrate on the development of a new
technique for obtaining a superior A-scan. Extension to two
or three dimensions should be straightforward and contains
nothing else which is particularly novel.
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(Conventional devices either view the raw signal or employ
techniques based on the Fourier transform to yield an image.
One fourier technique uses the calculation of a correlation
function which tries to decompose the received into a se-
quence of the blurred transmitted signal which is sent into the
material. Phase cancellation of one reflection with another
makes this signal extremely difficult to analyze by fourier
techniques. A map of the raw signal of a perfectly sharp
boundary produces an imprecise blur at least to the extent
that the transmitted signal is smeared in time. Since it is not
reasonable to ask for crystals with all but perfect impulse
response functions, we must live with the wiggles in the signal.
We must therefore change the mathematics that is employed
to discriminate one reflection from the next rather than
relying entirely on forcing the crystal to do what it does not
want to do.

Fourier techniques all employ basis functions that are not
localized at all in the transform space. This suggests that if we
were to use a set of basis functions that are highly localized,
we might obtain superior results. This is the case when we
employ the wavelet transformation.

Il. INTEGRAL TRANSFORMS
The set of equations

8@ = |, K,x, (o) e M

W)= [, Katx, ga) da @

defines an integral transform pair. The function g(a) is called
the transform of A(x), and the variables x and a are called
conjugate variables.

To define a specific (named) transform, the two Kernel
functions K,(x, a) and K,(x, a) must be defined. Similarly,
the interval over which each integration is carried out must be
specified. Finally, something must be stated with regard to the
properties of the functions g and A for the transform and its
inverse to exist.

The fourier transform is defined by

K, =Q2m) "? exp(—ixa) , 3)
K, =(2m) "? exp(+ixa) , (4)
I, =[~, +], (5)
and
L =[-, +o]. (6)

It is sufficient that

[, eorax <= )

and

| ls@lda<s ®)

for the transform and its inverse to exist.

Please notice that the set of basis functions {exp(inx)},
n=0, 1, ... are orthogonal. Also note that both intervals
are infinite in extent. For use on a digital computer, it would
be preferable to use finite intervals (i.e., basis functions of
finite or even compact support).

We can convert the infinite fourier transformation to the
finite discrete fourier transformation. However, in the pro-
cess, we must now assume that the function we wish to
transform is periodic on the interval of the discrete transform.
This has unfortunate consequences.

It would be preferable to use an integral transform that has
the following properties:

1. The basis functions are nonzero only over a finite
interval (compact support).

2. The basis functions are orthonormal (orthogonal and
normalized).

3. The decomposition/reconstruction (transform/inverse
transform) algorithms should be efficient and if recur-
sive, rapidly converging.

lil. WAVELET TRANSFORMATIONS

The wavelet transform extends the notion of an integral
transform and adds another level of spectral resolution.
Rather than the transform being a function of one conjugate
variable, it is to have a pair of conjugate variables, thus

g(a,b) = MI% w222 hey ©)
10 = e | [ w552 el stat) 5, 10)
where
c.=[alwor e an
and
W0)=@m " [ e wiw dr. (12)

The parameters a and b can be chosen to vary continuously
(a, b €R with a #0) or in a discrete way [a = a]', b = nbya],
with m, n €Z (i.e., m and n are integers) and with a,>1,
b, >1, invariant]. We choose to use the latter.

We intend to construct our wavelet transformation by using
a “scaling function” which is defined in terms of a dilation
equation which employs a set of expansion coefficients {C, }.
We will then build (using the set of expansion coefficients
{C,}) the wavelets out of a linear combination of these
scaling functions. The wavelets that we construct form a
complete orthonormal basis. Please understand that although
the algorithms are given below to calculate these wavelets, it
is not necessary to do so to calculate the transforms of
experimental data and then to reconstruct.

IV. SCALING FUNCTIONS

Consider a scaling function ¢(x) that has the following prop-
erties: Given the dilation equation in terms of a set of
coefficients {C,}, k=0,1,..., M —1, then
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$x)= 2 Cup(2x— k). (13)
We wish to require that

f d(x)dx=1 14)

and that the coefficients are such that C, = 0 for k <0 and for
k=M.

If we multiply Eq. (13) by 2 and integrate over x, it can be
shown that

M-1
> C.=2. (15)
k=0

We would like to require that for some p,

M-1
2 C(-D)%"=0 form=0,1,...,p—1. (16)
k=0
Also, we would like to require that
M-1
2 CCyyy =28y, (17)
k=0

The function ¢(x) can be evaluated by starting with a
beginning function, ¢,(x) and iterating

H0= 3 Chx-R), =1 ()

This will converge to the desired scaling function ¢(x) at all
diadic points x = k/2”.

For the box function (the Haar wavelet) ¢,(x) =1, 0<x <
1, 0 otherwise, and there are two nonzero coefficients, C, =1,
C, =1, and p = 1. The convergence is immediate and ¢ = ¢,.

For the Daubechies scaling function D,(x) = ¢(x), we use
¢do(x) =1 when 0 < x <1, 0 otherwise. Also, we use only four
nonzero coefficients, C,. That is, M =4, and

C,=(1+V3)/4,
C,=(3-V3)/4,

C,=(3+V3)/4,
C,=(1-V3)/4.
For the D, scaling function, p =2.

Note that if there are recursion coefficients C,, ..., Cx_,,
then ¢ is zero outside the interval [0, K]. From continuity
considerations, we have ¢(0) = ¢(K) = 0. [However, with the

box function, with K =1, both ¢(0) and ¢(1) may not be
zero. |

V. PROPERTIES OF THE SCALING FUNCTION
From Eq. (13) we have

¢(x—n)= Mgl C,d(2x—2n—k). (19)

The scaling function is orthogonal to all of its translates,
i.e.,

InEf¢(x)¢(x—n)dx=0 forn#0, neZ. (20)
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Note that when |n| = M — 1, the integrand is identically zero.
Using the substitution s = x — n, ds = dx, we have

1= [ 665+ m) b ds
Therefore I, =1_,.

The scaling function is not orthogonal to its dilations. In
fact,

f d(2x) p(27x) dx =277 (21)

when j is the larger of j, and j,.
For the D, scaling function Eq. (15) states that

Co+C,+C,+C,=2. (22)
From Eq. (16) for the D, wavelet
C—-C+C,—-C,=0 (23)
and
-C,+2C,-3C,=0. 24)
From Eq. (17) for the D, wavelet (m =0)
Ci+Ci+C3+Ci=2 (25)
and for cases of m = *1,
C,C,+ C,C,=0. (26)
It is interesting to note that
Cot+ Ci=C,+Cy, (27)

which is a property that is useful in the reconstruction al-
gorithm. Therefore, from Eq. (22) and Eq. (25),

Ci+Ci=C,+C,. (28)

VI. THE WAVELETS

Remembering that the scaling function ¢ has M nonzero
coefficients, C,, we may now express a wavelet W(x) as

1
Wx)= 2 (D'C_b2x—k). (29)
k=2-M
Using the substitution n=1—k, i.e., k=1—n
M-1
W"(x)=W(x)= 2, (-1)'C,¢(2x—1+n).  (30)
n=0
Also,
) M-1
W2'x— k)= 2 (-1)"C,¢(2" " 'x — 1+ n —2k).
e (31)

From Eq. (16) using m =0 and Eq. (14)



fW(x)dx 2 (-1)**'c,_ k[¢(2x—k)dx.

k=2-M (32)
Using the substitution, s =2x — k, ds = 2dx,
L ds
[wwar= 3 1re,[ow %
k=2-M 2
1
c
D O (33)
k=2—-M

Now if we employ the substitution £ =1 — n, it is not difficult
to show that

M-1
f W(x)dx=1 > (-1)"C,=0. (34)
n=0
It can also be seen that
fW(nx— k) dx=fW(s) ds/n=0/n=0 (35)

by using s = nx — k, ds = ndx, for all n and k, n#0.

[wra= S 3 e e,

1=2-M k,=2-M

x [ (x— k) d2x— k). (36)
Using n,=1-k,, n,=1—k,, ie, k;,=1-n, and k,=
1—n,, we have
-1 M-1
f|W(x)|2dx- 2 2 (-ymre,c,
ny=0n,=0

x [ o) —nm+n) 2. (a7)

For the D, wavelet, [ ¢(s) ¢(s — n, + n,) ds =0 unless n, =

n,. Thus,
—-1M-1 M—-1
f|W(x)|2dx- 2 2 (1), G, =2 Cl=1.
n;=0n,=0 n=0 (38)

One more property worth mentioning is that
WQ2'x —n)=-W(n+1-2). (39)
We may now define
W;‘,{(x) W, (x) =2""W(k - 2’x) (40)

Out of these we may expand a function f(x) in terms of
multiresolution expansion coefficients bjk, thus

k=0,...,2".
(41)

fy=f*+ g b 27 W,(x), j=0,...;
7>

Note that b, carries information about f near x =2’ and near
x=2"k. The sum on k is the detail at the scaling level, 2”.

In summary, as has been shown, these functions, our
wavelets, are orthogonal to their own dilations and their own
translations. That is,

f W(x) W(2'x — k) dx=8,8,, jkEZ. (42)

There are two indices, one for translation, k, and one for
dilation (or compression), j.

Plots of the scaling function and the lowest sequency Haar
wavelets are given in Fig. 1. Figure 2 gives a plot of the D,
scaling function and Fig. 3 gives the lowest sequency wavelet.
Higher-order wavelets are formed mathematically in a manner
identical to the Haar wavelets.

Other wavelets may be formed by a linear combination of
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Figure 1. The Haar wavelet.

6(x)

Figure 2. The D, scaling function.
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W(x)

Figure 3. The D, wavelet.

wavelets. That is,
LY=L3w=2 (k) Wi@. )

In order to achieve the wavelet properties listed in this
section, it is found that the choice of the sets {C,} is far from
arbitrary. Only special combinations of precise values are
allowed. Otherwise one or several of the desired wavelet
properties will be lost. For ease of understanding, the specific
wavelet forms that are to be used in the imaging device will be
defined as Letcher Wavelets, or L™, with the wavelets in the
form generated by Egs. (18), (30), (40), and, ultimately, (43)
with M=24,6,....

Vii. SEQUENCY [2]

Frequency is a parameter that distinguishes the individual
functions of sets of sinusoids {cos2#ft} or {sin2wft}. Its
usual physical interpretation is “number of cycles per unit of
time.” The generalized frequency may be interpreted as
“average number of zero crossing per unit of time divided by
2” or as ‘“‘average number of sign changes per unit of time
divided by 2.” The normalized, generalized frequency is
interpreted as “‘average number of zero crossings per time
interval of duration 1 divided by 2.” The generalized fre-
quency has the dimension [s~']. The definition of the general-
ized frequency has been chosen so that it coincides with that
of frequency, if applied to sine and cosine functions. The zero
crossings of sine and cosine functions are equally spaced but
the definition of the generalized frequency makes it applicable
to functions whose zero crossings are not equally spaced and
which need not even be periodic.

It is useful to introduce the new term ‘“‘sequency” for the
generalized frequency. The measure of sequency is “‘average
number of zero crossings per second divided by 2.” When the
term sequency is applied to wavelets, it refers to the average
number of zero crossings per unit time divided by 2, consider-
ing only that time when the wavelet is nonzero.
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Viil. FUNCTION DECOMPOSITION

We are given a vector of N (=27) data values [f,, ..., f,]=
F, representing the function f, where the time spacing of the
data values are evenly spaced on a unit interval. The goal is to
split this vector F into its components at different scales,
indexed by j. At each new level the mesh width is cut in half
and the number of wavelet coefficients is doubled. The com-
position is

f=f¢ +f(0)+f(1)+ ... +f(l_l)+fe", (44)
2J 2J

f(f) - 21 bij_j/ZW}k(x) = kzl b].kW(k - ij) , (45

and
fPe)=b,6(1-x), (46)
= i > by W(k —2%x). (47)

Note that f** =0 at x = any of the sampled points. The detail
f is a combination of 2/ wavelets at scale 27/ f* is a
multiple of the scaling function ¢.

The wavelet transformation will accept a vector of N data
values, F, and produce a vector of N values, B plus a vector of
length N —1, A. The inverse transformation will accept a
vector of N values, B, and produce a vector N values, F, plus
a vector of length N — 1, A. The first element of A is identical
to the first element of B; therefore, it is redundant. Please
note that both the transform and its inverse will produce the
detail vector A.

IX. THE WAVELET TRANSFORM ALGORITHMS

The algorithms, that perform the forward and inverse
transformations have been described before, almost. Strang
[3] states that we can define four sets of matrices "E, "H, "E*,
and "H* such that

("E),=C,_,/2, (48)
("E*),=C,,_,, (49)
("H),=(=1)""Cpy0l2, (50)
("H"),;=(1)""Ch i (51)

The preceding superscript n denotes the size or dimen-
sionality of the matrix. That is to say that "E is a 1 by 2/
matrix where 2/ =2", i.e., ’E is 4 by 8. For the D, wavelet the
matrices E and H are shown in Fig. 4. As the dimensionality is
increased, it is done by repeating, thereby increasing the
pattern to the right and down. Notice the two orphan terms in
row 1 of E and row [/ of H.

The matrices "E* and "H* are the transposes of "E and "H
except that the factor of § is not present.

Because of the properties we have imposed on the set
{C,} given in Egs. (15), (16), and (17), it can be shown that
for each n,



,"Eislx2l
where 2/ = 2°
CE is 4 x 8)
(E)n = czi.j /2 (E*)ji = Czi-j
y=4/2+3) y=1
€— 21 >

(H)i,' ('l)jﬂ Cju-zi /2 (H*)ji = (‘l)m cj+1-2i
Y = 2/ +CH = (1.03517)
= 1.0717839
Figure 4. The matrices E and H for the D, wavelet.
"E"E*="H"H*=1 whichisI X[, (52)
"E*"E* + "H*"H=1, whichis2l X2/, (53)
"H'E*="E"H*=0, whichis! X/, (54)

that is, if we introduce, unlike Strang, a multiplicative factor y
to the orphan terms in each matrix. The symbol 1 represents a
matrix of ones on the diagonal and zeros elsewhere, and 0 is a
matrix of all zeros. Here, for the above relations to hold,

y=2/(C:+ C3)=1.0717839. (55)

These matrices are shown diagrammatically in Fig. 4.

The forward wavelet transformation algorithm is shown
schematically in Fig. 5. Starting with a linear array F which is
I x 1 (and is defined to be A", n =2'), then two arrays, A"’
and B""', can be calculated by the process

A"l ="EA" (56)
and
B :="HA". (57)

This process is repeated until # — 1= 1. Then the arrays "A
and "B* are accumulated into single arrays A and B. This is
shown schematically in Fig. 5.

Notice that in each step, the computational burden is cut in
half. This decimation accounts for the O(N log, N) behavior
of the algorithm.

4 x8 2 x 4 1x2
F= al a? a! > a® = b,
8x1 8x1 4 x1 2x1 1x1
b g ‘"
4 x 8 2 x4 1x2
b? b! b°
4 x1 2x1 1x1
a¥! = kK a* b' = *a¥ , K=1, ..., J

Figure 5. The wavelet transform algorithm.

The inverse wavelet transform uses the matrices E* and H*
as shown in Fig. 6. The single B array is used selectively to
calculate a new set of A" arrays. Finally, the array F is
obtained.

A"i="E*A" + "H*B" (58)
F=A", (59)

where k is the final value of n. This algorithm is shown
diagrammatically in Fig. 6.

We can visualize the action of both the forward and inverse
transformation as shown in Fig. 7. The large arrow pointing to
the right indicates that the F is transformed into arrays A and
B. The inverse transformation uses only the B array to
calculate both the F and A arrays. The A array is automatical-
ly calculated in either form of the transformation. The func-
tions listed immediately to the left of the B array in Fig. 7 are
the basis functions which correspond to the coefficients in the
B array.

The question might arise, “Would it be possible to force
the calculation to go faster if the A array were not
calculated?” The answer is no. The values of the A array (as
they are calculated) are needed in each stage of the calcula-
tion of the B array (forward) and the F array (inverse).

The algorithm is basically the pyramid algorithm of Mallat
[3]. This is an algorithm that is extremely efficient and is R
(Nlog, N). The D, wavelet transformation software has been
written as well as fourier transformation software to take full
advantage of the architecture of the Cyrix Corporation
EMC87 memory-mapped high-speed coprocessor to a 80386
computer. All of the software described in this article is
commercially available from Cyrix Corporation.

1Ex 2Bx 3px
2x1 4 x 2 8 x 4

ak = Kgx gxl + Kg* Pkl K=1, ..., J

Figure 6. The inverse wavelet transform algorithm.
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fy W (1 -2x) by a,

b! a'
f, W2-2x) by, 2y,
fs W (1 -4x) by ay
f W (@2-4x) by .

b’ a?
f W (3 -4x) by ay
fy @ W (4 - 4x) by, ay
fy W (1 - 8x) by ) a,
fio W (2-8x) by, a,
i W (3-8 by ay
fi W (4 - 8x) T by 8y

b’ a®
fis W (S - 8x) bas 2y
fie W (6 - 8x) by ag
fis W (7 - 8x) by a5y
fi W (8 - 8x) by ay,

A A -aa =F

F B A

Figure 7. The wavelet transform (for N = 16, J = 4).

X. INTERPRETATION OF THE A AND B ARRAYS

We are given a set of data values F,, i=1,...,N. F, is the
sampled value of F at the value of x,. The x, values are evenly
spaced on the unit interval, i.e., x,,, —x, = 1/N.

In any transformation of this type, we wish to chose a set
of N functions {4} which exhibit orthogonality and normali-
zation. We wish to find a set of coefficients so that the
function F is expressed as a linear combination of the basis
functions, that is,

N
E=F(x,-)=(F).»=§1bk¢k(x,«), i=1,...,N.

(60)

For the wavelet transformation, ¢, = ¢(1 — x), ¢, = W(1 — x),
= W(1 - 2x), ¢, = W(2 — 2x), etc. The array B is calculated
so that (B), =b,. There are N coefficients as F is real.
The discrete complex fourier transformation is defined in
an identical way except that the basis functions are defined as

= (2m) " cos(2mwknx) ,
Uiy =(2m) "% sin(2wknx) . (61)

The basis functions are sinusoids with sine—cosine pairs each
at different frequencies. Notice that for an N point Fourier
transform, 2N basis functions are required because the func-
tion to be transformed is complex and it is sampled to yield N
real and N imaginary point values.

If we view the wavelet basis functions each as a single-cycle
sinusoid that is nonzero only over one cycle, then our approxi-
mate wavelets could be.

¢, = ¢(1 —x)=aconstant, ¢, =W(1—x)

=sin[27(1 - x)], etc.
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Notice that there are only v different sequencies (N=2"),
N/2 of the highest sequency, N/4 of the next lower, etc. The
N/2 basis functions of the highest sequency are such that the
number of the ordered set is displaced one from the other by
exactly one cycle.

The interpretation of the B array is straightforward: N
functions have been chosen as a set of basis functions of a
space into which F shall be projected. The elements of the
array B are the fraction of the function F represented by each
basis function. By limiting the number of basis functions to a
small (finite) number, we limit the class of functions that can
be represented exactly. In the fourier transform, the basis
functions that are not used are all sinusoids of frequency
greater than the maximum listed in Eq. (60) by letting
n = N —1. This gives rise to aliasing and the Gibbs phenom-
enon if the sampled signal contains frequencies greater than
one half of the sampling frequency (the Nyquist frequency).
In the case of the wavelet transformation, those basis func-
tions which are not used are those of higher sequency than
those employed, i.e., of higher-order dilations.

The A array can be broken into a sequence of subarrays of
progressively larger size. The first array has a length of one,
the second has a length of two, the next four, etc. Each of
these subarrays can be interpreted as being what the F array
would become if all higher-order sequencies (corresponding to
the sequencies of the respective B elements) were removed.
That is, the highest-order subarray of A is the array F with the
highest sequency removed, the next subarray is the array F
with the highest two sequencies removed, etc. If we view this
as a form of low-pass filter, a sequence of successive applica-
tions of low-pass filters is identically the A array.

XIl. THE SAMPLING INTERVAL

In the act of calculating the A and B arrays, the wavelets,
W, and the scaling function ¢ are never evaluated. Yet, when
one asks the questlon if we were to calculate the set of points
g,>1i=1,...,n from the equation

J-1 2/

=8() =b,¢(1-x)+ 2 2 b,Wk—2%) (62)

where
x,=(i/Ny-KX, i=1,...,N and 0=KX=<1/N
and
(B),=b,
and
(B),,=b,, m%2f+k—1,

then how precise is the representation? To answer this ques-
tion, consider the function Error, the error of representation,
which is expressed as

Error= %

(fi= 8) - (63)

ik Mz

This function is intrinsically positive and will equal zero
only when all g, is equal to the corresponding f,.



using the €ight-point torward transiormation software dis-
cussed above, the value of Error was calculated as a function
KX. Note that 1/8 =0.125, the fraction of the unit interval
occupied by each data point. For the Haar wavelet, Error is
identically zero for all values of KX >0.0 and KX <0.125.
This means that if the eight values of F are defined on the unit
interval, and evenly spaced in the interval, it does not matter
where in the 0.125 portion of the unit interval that you place
the first point. However, with the D, wavelet, it is found that
the value of Error is surprisingly sensitive to the value of KX.
Table I is the set of calculated values of the error of repre-
sentability, Error as a function of the position in the interval
by taking samples as shown in Fig. (8). Therefore, in the case
of the D, wavelet, the error is sensitive to any offset (transla-
tion) of the sampling grid within the unit interval. A value of
0.167 E + 01 was obtained by spreading the sample over the
entire interval (with a spacing of 1/7 with a point at each end
point).

Xli. THE ULTRASOUND A-SCAN; A REVIEW OF THE
PHYSICS

Consider a plane wave of sound in a material with acoustical
impedance Z, = p,v,, and absorption coefficient u,, where p, is
the density and v, is the velocity of sound in the material i.
The intensity I of the sound at a distance x within the material
is given by

I=1e " . (64)
Scattering of sound out of the beam is considered to be
absorption. If the medium is homogeneous, no reflections are
generated traversing the medium. However, if a boundary is
encountered between media of two different impedances,
then some of the sound will be reflected directly back (R) and
the rest will be transmitted through the boundaries (T), i.e.,
T=I-R|[1].
zZ,-Z,

R=122+Zl‘

(65)

In  water, v=1483x10°cm/s, p=1g/em’, Z, =
1.483x10°g/cm®s.  In  muscle, v=1.55x10°cm/s,
p =1.08 g/cm’. Therefore, Z, =1.68 X 10° g/cm’s.

H=(Z,-2,)[(Z,+ Z,)=0.12/3.08=0.039  (66)
and

TIH=2Z/(Z,+Z,)=2.96/3.08=0.961, (67)
where Z, < Z,, the magnitude of the reflected wave is the
same as when Z, < Z,. However, the phase of the reflected
signal is reversed. To a first approximation, multiple back
reflections occur with probability ~[(Z, — Z,)/(Z, + Z)]*;
therefore these may be ignored. To a first approximation, the
devices received signal is a sequence of primary reflections.

Xlll. THE IMAGING DEVICE

Consider a directed beam of sound the magnitude of the
intensity of which is a time-reversed wavelet of sequency j. At
first glance, what one would expect to find is a sequence of
wavelets which are translates of each other, one for each
reflection boundary. The time for receipt is the time of flight
of the sound. Some slight wavelet broadening may be expect-
ed; however, we assume that the broadening will be the same
form in all media under investigation. Altering the sampling
time of the received signal to account for this broadening is a
part of the “tuning” of the device. The received signal should
be a combination of translates of a single wavelet, the strength
of which is proportional to the expression (Z,— Z,)/
(Z,+ Z,). If desired, this can be corrected for absorption due
to nonzero u. The algorithm is described below. The received
signal is given by
M1

2 M3
_ —

1,

—X; X, — x>

R=1,e*"(Z,~ Z))(Z,+ Z,)
+ 1y e TNz, — 7)) (2, + Z,)
+ 1, e Pmtrentiesl(z 7 Y (Z, + Z,)
+ o ..

(68)

Table I. The algorithm to correct for nonzero u is described below.
KX Error KX Error When the received signal is transformed by a forward
0.001 0.146E + 1 0.080 0.492E-2 wavelet transform, the only B array terms that are nonzero
0.010 0.812E + 0 0.086 0.859E-3 are those for the levels j and j — 1. The B values give a direct
0.020 0.509E + 0 0.087 0.781E-3 map of the reflections.
0.030 0.283E +0 0.088 0.803E-3 The part (lower half) of the array B is a 1 by N/2 array
0.040 0.202E + 0 0.090 0.125E-2 that is converted (using this array and other values within B
0.050 0.103E+0 0.100 0.162E-1 by a transformation which is described later into a 1 by N
0.060 0.402E-1 0.110 0.503E-1 array called R). This is a direct map of the reflections and the
0.070 0.228E-1 0.120 0.101E +0 magnitudes (if all absorption coefficients are assumed to be
0.124 0.127E +0 zero) are proportional to the (Z, - Z,)/(Z, + Z,) terms of
x(1) X(2)y X(3) X(4) x(5) X(6) x(7) x(8)
I 1zs-—->| —_— 1z;—| ns——{ l l I
X

N | v 1 v ¥

'I 1 | I i 1

) .125 .zso .375 .soo .625 .750 .875 1.0

Figure 8.
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£d. (60). LOonsSider now an array Z which 1s calculated irrom R
by

(2),=(2Z),_, + (k-i)R,. (69)

This array represents data evenly spaced on the interval.

Assuming that the material being imaged is identical at the
beginning of the scan (i = 1) to that at the end (i = N), then k
is selected so that Z,, =Z,. This compensates, approximately
and efficiently, for nonzero absorption coefficients. Equation
(67) converts the map of the reflection coefficients directly
into a map of acoustical impedances (density times velocity of
sound).

Clearly, Z(x,,,) should be Z(x
not been properly accounted for.

The imaging described herein will work for any degree of
wavelet, i.e., for M =2, 4, .. .. The computational burden in
performing the transform is directly proportional to the num-
ber of nonzero coefficients M; therefore it should be desirable
to use the lowest-order wavelet possible. However, as a
general rule, the higher the order of the wavelet, the easier it
is to generate the time-reversed transmitted signal.

), else absorption has

min

XIV. GENERATION OF THE ULTRASOUND WAVELET

Commercially available ultrasound transducers all possess re-
sonances that makes it impossible to feed a voltage signal to
the transducer and have the transducer produce a sound
amplitude which is proportional to the applied voltage. How-
ever, linear system theory [4] offers a technique that allows us
to present a signal to the transducer that is not what we want
but is specifically designed to account for the precise manner
in which the transducer will distort the signal so that, after the
distortion, the desired signal shall be produced.

Consider the transducer to be a linear system with transfer
function G(s). That is given an input signal f(¢) with fourier
transform F(s), i.e., F(s)=FT(f(¢)), then the output signal
h(t) can be calculated because the fourier transform of A(f) =
H(s) is given by H(s)= F(s) G(s). So, h(t) is the inverse
fourier transform of F(s) G(s).

The impulse response function of the system g(¢) is the
inverse fourier transform of g(s), i.e., G(s) = FT( g(¢)). There-
fore the output signal A(r) is the convolution of the impulse
response function g(t) with the input signal f(¢).

If we want the transducer to produce a defined h(¢), then
the system should be offered a calculated input signal f(¢),
rather than h(¢) itself (which would be given if the transducer
were perfect, i.e., with an impulse response function which is
an impulse). If this signal f(¢) is defined to be the convolution
of h(r) with g ~'(¢), then the transducer should produce A(t) as
its output. This is equivalent to adding another system in
series with impulse response function g ~'(¢) to a system with
the impulse response function g(¢). The time delay produced
by this process is of no significance whatsoever.

Given a specific ultrasonic transducer, it is possible to
generate a wavelet w(¢) with it by the following procedure:

1. Feed a sharp voltage spike to the transducer and dam-
pen the response so that there are no zeros.

2. Measure the signal generated by the transducer. This is
the impulse response of the transducer, g(z).

3. Calculate f(t), which is the inverse fourier transform of
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the product of g '(¢), and the fourier transform of the
desired wavelet w(t), which is W(s).

4. Feed the signal f(r)=FT '(b~'(t) FT(w(t)) to the
transducer. A good approximation of the wavelet w(r)
will be generated by the transducer.

XV. THE IMAGING PROCESS

The received ultrasound signals are transformed in accordance
with the above transformation algorithms into a form repre-
sentative of the acoustical impedances of the body materials.
This information or data can be provided to the operator as
numbers or it can be provided in a graphical form on a CRT
or in hard copy. Usually, the signal representations will be
provided to the operator in an image form such as from an
oscilloscope or on a CRT, where the image corresponds to the
body material interfaces, as are all well known in the art.
Furthermore, the signals can be transformed into numerical
values, graphs, or images of the density of the materials or the
velocity of the sound through the body materials, again as are
well known to those skilled in the art.

The invention described above was experimentally reduced
to practice in the following manner. Wavelet generation was
accomplished by a digital pulse generated by a computer
command in a 33 MHz 80386 CPU equipped with a Cyrix
EMCS87 coprocessor. This CPU was connected to a SCI
Wavelet Generator/Receiver Circuit Card that sent the signal
to a Panametrics SOOPR Pulse Receiver, connected in turn to
a Panametrics 2.5MHz V305SU F=3.0" ultrasonic trans-
ducer. The same transducer was used for sending and receiv-
ing. The signal was passed to the SCI Wavelet Generator/
Receiver Circuit Card that stored the data in 8-bit evenly
spaced points starting at the same time that a command was
issued to transmit the L™ wavelet.

An SCI MRI Coupler Card in the computer’s CPU asked
for the full transfer of the received data to RAM. The CPU
then performed the single wavelet correction calculation, and
a forward wavelet transformation on selected parts of the
data; thereby the data of a single scan line was obtained which
were the reflection coefficients. The reflection coefficients
were then integrated to produce a map of acoustical impe-
dances (density times velocity of sound) of the body materi-
als. The transducer was physically moved to produce another
scan line, with the set of obtained scan lines producing a
rectangular image that was viewed directly as reflection co-
efficients or integrated to produce a map of acoustical impe-
dances.

To illustrate the benefits of using this device to produce
images of a quality better than that of the prior methods, an
ultrasound device was used to generate a signal which is
transmitted into a tomato in a container of water. This process
(of obtaining a single scan line) is repeated 256 times by
displacing the transducer by a small distance, yet keeping the
focussed beam parallel to the previous one. Care is taken to
assure that all scan lines are obtained in a single plane. From
the received signal alone which is obtained by these conven-
tional techniques, the internal structure of the tomato cannot
be determined accurately by visual inspection of the set of
signals.

Consider a single scan line. The reflection ultrasound signal
can be calculated from the acoustical impedances by use of
Eq. (68). Here all of the absorption coefficients can be taken



to have the value of u; =0. For the purposes of this example,
the impedance is defined to be proportional to the measured
(optical) density. This single line is shown in the plot labeled
Z in Fig. 9. From the signal Z, the received ultrasound signal
is calculated by well known techniques which are given by
Eqgs. (68) and (69) and is displayed in Fig. 9 by the plot
labeled F. The wavelet transformation was applied to this
function F and the resulting B array plot is shown. From the B
array, above, using the techniques described herein, a calcu-
lated impedance is obtained and shown as the plot labeled V.
Excellent agreement between Z and V can be observed.

The above procedure was carried out on all 256 scan lines
of the image. The image on the left side of Fig. 10 is the
calculated ultrasound signal, consisting of 256 individual scan
lines. The image on the right shown in Fig. 10 is the results of
performing the wavelet transformation reconstruction al-
gorithm described herein on the data given on the left-hand
image. The image of the ultrasound signal shown on the right
is slightly superior to that obtained experimentally as com-
plete correction for absorption has been made. Nevertheless,
the image on the right-hand side is calculated entirely from
the image on the left. No other data are employed in this

Figure 9. The plots of the calculated values of the received ultrasound signal F, the value of the B array obtained by applying the wavelet

transformation on B and the calculated value of the impedance V/

Figure 10. The image on the left is the calculated ultrasound signal taken in a plane through the center of a tomato in a container of water.
The image on the right is the result of performing the wavelet transformation reconstruction algorithm described herein on each of the scan lines

of the image on the left.
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calculation, so no claim is made that there is more information
in the right-hand image than in the conventional image on the
left. Yet it is felt that this mathematical transformation yields
superior results because it offers the data in a form which
makes it more meaningful to a human observer.

It should be noted that the absolute values of the impe-
dances are not calculated, only the relative values. Therefore
the absolute magnitude and gradient have been chosen by the
author. A small amount of signal conditioning was performed.
Two consecutive samples were adjusted to have identical
values to prevent the reconstruction algorithm from generat-
ing nonzero occupation numbers for lower sequency wavelets.
This restriction will be removed in the next paper of this
series.

The process described above can be refined into a practi-
cal, portable, inexpensive, real time, noninvasive imaging
device.
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