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A computer software technique has been developed and employed to
insert a modified-Wiener-deconvolution filter (an optimal filter) imme-
diately following the quadrature detector of a magnetic resonance
imager. The purpose of this effort is to try to suppress the undesir-
able effect of the noise found in the magnetic resonance imaging
receiving antenna. This technique convolves the sampled real and
imaginary signals taken directly from the antenna quadrature detector
with a transfer function which is expressed in terms of the power
spectrum of the measured signal with noise and the measured power
spectrum of the noise, alone. The latter factor is measured during the
dummy cycles which precede a normal scan sequence. Results are
presented using data taken with a commercially available phantom.

INTRODUCTION

Nuclear Magnetic Resonance Imaging (MRI) is a good exam-
ple of a computer-driven experiment. Through the use of an
equation  describing rather well-understood physical
phenomena, it has been possible to design the conditions
under which images, i.e., density maps, of living tissue can be
generated, noninvasively.

Within the MRI equipment, a receiving antenna detects
signals emitted by the patient that are stimulated by a se-
quence of radio frequency pulses while the patient is im-
mersed in a magnetic field. These signals, from which images
are calculated, are received as a sequence of complex time
series of voltages from the receiving antenna. Unfortunately,
the accuracy of this procedure is marred by the presence of
additive noise generated in our about the receiving antenna.
Such noise can be static or power surging in the electrical
supply, strong local RF sources, such as radio/television
transmitters and other adjacent, powerful medical equipment,
or noise generated within the MRI itself. The reduction in
image quality is evidenced by shadows, haze, and/or bands of
horizontal lines. Such reduction in image quality can present a
problem to a medical practitioner trying to correctly detect
abnormal tissue within a patient.

To ensure that such noise is reduced or eliminated, the
MRI is equipped with a shielded filtered power supply and a
plurality of RF shields. Further, very careful attention is paid
to proper manufacturing of components and proper mainte-
nance. Due to continued use and the inherent complexity of
the MRI, the undesirable effects of such received noise often
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becomes apparent. Usually, the MRI is then shut down until a
repair person can adjust the RF shields, etc., to try to correct
the problem. However, ceasing the use of the MRI is waste-
ful, and even the most skilled technician cannot remove noise
caused by the MRI’s internal components.

There is a need for a simple system that can be used on
existing machines as well as incorporated into the manufac-
ture of an MRI to suppress or eliminate the undesirable
effects of noise. This paper describes the use of one optimal
filtering technique in the MRI image reconstruction process
which overcomes the foregoing deficiencies and meets the
above described needs.

Since the raw data samples are not usually available to the
researcher in a commercial imager, equipment was designed
and built to replace the entire receiving end of a commerical
MRI. This equipment was used to implement the filtering
technique described herein.

The MRI experiment is well understood and is described
adequately elsewhere [1, 2]. However, a brief review is given
below to define terms which are used later in this paper.

THE MRI EXPERIMENT

By applying a properly designed RF pulse to a sample, we can
induce conditions such that the observed signal from a small
volume in a magnetic field H, is expressed by

dS =dx dydz N(x, y, z) exp(—2wift + ¢) (1)

where N is proportional to the number of spins within this
infinitesimal volume at coordinates (x, y, z). These spins are
the intrinsic angular momentum (magnetic moment) of the
hydrogen nuclei (protons) within the body. The frequency f of
the ‘emitted radiation is directly proportional to the imposed
magnetic field strength H. Therefore, by superimposing gradi-
ents in two of the orthogonal directions on the steady mag-
netic field, it is possible to (1) select for excitation only spins
within one plane and (2) cause a distribution in emitted
frequencies in a plane perpendicular to the selected plane.

The experiment proceeds as follows. A sequence of RF
pulses and imposed gradients are used so that the signal may
be sampled. This produces a time series of a complex signal.
One then generates a sequence of these time series, one
different from the other, by varying a small magnetic field
gradient in the third orthogonal direction. This generates a
pseudo time frequency so that looking at the set of time series
(t,,t,) as a whole the received signal is expressed as
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gt,t,)= f_ L G(f, ®)e > *2) df d® ()

The gradients are selected so that f=f, + x and P=f+y,
where f, is the Larmor frequency, at which resonance is
produced by H,.

The sampled data in the MRI experiment are meas-
urements of g(t,, t,). For example, in a 256 by 256 image, 256
sequences of 256 equally spaced sampled points of a complex
signal are measured by two-channel analog-to-digital conver-
sions. By two-dimensional fourier transformation, the spin
density function G(x, y) is given by

6= || st e ddn, )

Since the signal is sampled N times, the continuous function
g(t,, t,) is recorded as a complex array g(pT,, qT,), where p
and q are integers in the interval [0, 255], and T, and T, are
constants for a given experiment.
Using T,=T,=4x10""s for the examples below and
N =256, and if n and m are integers in the interval [0, 255],
then
N-1 N—-1
G(n/NT,,mINT,)= 2. 2 g(pT,, qT,)e> """ "'~
@)

Notice that G and g are complex and are stored in the
computer as complex arrays G(n, m) and g(p, q). The mag-
nitude image I(n, m) is a real array calculated as follows:

l(n, m) = (|Real(G(n, m))|2 + IImag(G(n, m))|2)1/2 (5)

By the form of Eq. (2) and by the use of properties of the
received time series (e.g., each of these is a wavelet), we may
then apply two-dimensional fourier transformation to obtain
the two-dimensional array of complex image data, the mag-
nitude of which is the “image”. Image reconstruction al-
gorithms are derived by the forms of the equations and the
properties of the functions, not by applying any physical laws.
Theoretically, this procedure can be carried out to produce
images of living tissue of extraordinary quality. There appears
to be no theoretical limitation to the accuracy of this method.
Unfortunately, additive noise is present in the received signal.
Therefore, the two-dimensional fourier transformation is per-
formed on the signal plus noise which produces a variety of
artifacts, such as ghosts, haze, or lines, on the images. Fortu-
nately, many workers [3, 4] have done work with time series
of this sort that enable us, through computational techniques,
to attenuate the effects of this noise.

THE EXPERIMENTAL EQUIPMENT

Equipment was designed and assembled to carry out the
signal acquisition, filtering, fourier transformation, image dis-
play, image manipulation, and other tasks which was indepen-
dent of, but worked in parallel with, the equipment included
with the MRI.

The MRI gradients and RF signals were generated by a
Picker International Vista MRI, and the magnet used was an
Oxford 0.5 tesla superconducting magnet, which is in current
use for medical purposes. The receiving coil could be a
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commercially supplied body coil or head coil or surface coils
which have been designed by this author [5]. The receiving
unit included a preamp/filter and quadrature detector to
accept the signal from the MRI receiving antenna. A unit was
built that included a dual channel 16-bit analog-to-digital
conversion processor (an Analogic Corporation Shad 2). The
control circuitry consisted of two finite state engines [6], which
are small, extremely fast control processors which were adap-
ted for this purpose. These engines were contained in a small
enclosure that was placed next to the quadrature detector of
the MRI. A fiber optic cable or ordinary flat cable (depending
upon the distance to the receiving computer) sent the real and
imaginary 16-bit samples (taken at a rate of 100,000 samples
per second) to a specially built circuit card. This circuit card
was inserted into an industrial grade IBM PC/AT-type com-
puter (a Diversified Technology CAT 901) where the memory
bus and 1/O bus were run at 10 MHz with zero wait states.
The image reconstruction and filtering described below were
performed using the Intel 80286 and 80287 processors with
software written by the author. The fourier transformation
software was a slight variant of the Cooley Tukey algorithm
[7]. Image display was accomplished using Matrox profession-
al image processor (PIP 640B) which fed an Electrohome 15
inch 1000 line resolution 256 level gray scale monitor.

OPTIMAL FILTERING

In the MRI experiment, the observed complex signal s(t,, t,)
is not clean. In the data collection process, the actual signal
g(t,, t,) has been mixed with noise n such that

s(ty, t,) = g(ty, t,) +n(t,, L,). (6)

Let's assume that g and n are quantities whose power
spectra are known (in principle at least, when sufficient data
are available to achieve the desired accuracy). In the MRI
experiment, the noise to be suppressed is uncorrelated with
respect to the signal. The power spectrum of the noise (the
signal plus noise recorded without signal) is measurable as
dummy cycles before the actual scan is initiated. In most
instances, the noise is small with respect to the magnitude of
the signal, but need not be so.

The design of the digital filter is such that the observed
signal s is transformed into a signal y which, in the least
square error sense, is as close to g as possible. For y to equal g
is simply too much to ask for any linear filter. The process for
calculating the transfer function for this filter is outlined
elsewhere for the case when the signal without noise is
measurable [5]. These data are not available, but it can be
asserted that the power spectrum of the signal without noise is
that of the signal with noise minus the power spectrum of the
noise. Therefore, the proposed transfer function is h; = (P, —
P,)/P,. The latter term serves to normalize h to unity when
P,=0.

The transfer function h, when convolved with the observed
signal s = g + n, produces a good approximation of the actual
signal'g. The process is as follows:

1. Obtain sample data sets n for ambient noise, alone.
2. Obtain a data set of the observed signal s;, j=
1,...,256.
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Figure 1. The magnitude image of the phantom calculated without any attempt to remove the noise in the received signal.

3. Calculate the fourier transform of the autocorrelation of 6. Obtain the convolution of the transfer function h;, with
the signal of noise, alone=P,. the observed signal s;, yielding g;. Note that the trans-

4. Calculate the fourier transform of the autocorrelation fer functions h; are different for each of the data sets ;.
function of the signal with noise,=P,,.

5. Calculate the transfer function h,= (P, —P,)/P, for Since a fourier transformation is to be performed on each
each data set. g, as a part of the image reconstruction process, the process of

'Figure 2. The magnitude image of the phantom calculated using the calculated deconvolution filter described in the text.



convolving h; with s, is never carried out. Using straightfor-
ward programming techniques, the cost of performing this
filtering technique is the price of the calculation of an au-
tocorrelation (which is equivalent to another fourier trans-
formation plus a multiplication). Therefore, in a normal re-
construction of a 256 by 256 image, 2 X 256 fourier trans-
formations are calculated. Using this technique, 3 X 256 are
required.

STUDIES WITH A PHANTOM

A “phantom” is a large block of plexiglas into which is
inserted geometric objects of different magnetic per-
meabilities which is used to test the accuracy of the MRI. A
phantom manufactured by Picker International was used to
provide experimental data. The above described equipment
was run and was tampered with to induce a variety of
different types of noise to test the performance of the optimal
noise filtering. For example, in one test a grounding lead from
the imaging unit was intentionally broken, thereby inducing
additive noise to the imaginary signal, and a coherent essen-
tially single frequency signal was also induced to produce a
number of artifacts such as haze and broad noise lines that
greatly diminish the interpretibility of the image. Thereafter,
the same data with added noise were filtered by the technique
described herein. Figures 1 and 2 show the results before and
after the filtering process. Notice a significant improvement in
the quality of the image by the elimination of the haze and
horizontal lines without any apparent degradation in the
unaffected parts of the image itself.

There are two instances when this filtering technique will
not improve the quality of the images. The first is when the
noise is white, i.e., when P, is a constant. The second is when
the power spectrum of the noise is identical to that of the
signal. That is when P, =P, , then h; is a constant, a no filter.
Uusualy, this is not the case.

- Even though the use of this process adds the additional
computational burden which is the equivalent of 256 fourier

transforms, there is normally enough computer time available
during data collection to carry out this process if a fast
algorithm is used. Adding this step should not delay the time
spent in producing an image. At the very least, the calculated
P, is a monitor of the operating condition of the MRI unit. It
is felt that this procedure can be successfully used in the image
reconstruction process in essentially all images.
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