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Two methods are presented to delineate localized orbitals defined on large basis sets. These methods
calculate equivalent oribitals for polyatomic molecules which are accurate enough for precise quantum
mechanical calculations. The localized orbitals are defined in terms of parameters that can be readily
visualized by the chemist, yet allow changes in electronic structure during molecular bond formation and
substituent exchange reactions to be determined. It is shown that these equivalent orbitals constitute a
foolproof starting point for self-consistent field (LCAO-MO-SCF) calculations. The results of calculations
on the water molecule using Gaussian basis functions are presented along with a discussion of numerical and

computational techniques.

INTRODUCTION

This series of papers presents a representation for
the accurate mathematical description of the electronic
structure of polyatomic molecules, which is defined in
terms of concepts and parameters that have an intuitive
appeal to the chemist. (The first paper! in this series
deals with the definition of equivalent orbitals of a sys-
tem of o bonds defined in terms of minimal basis sets.)
The representation includes all of the parameters nec-
essary to trace the changes in the electronic structure
that take place in molecular bond formation and the
changes in bonds during substituent interchange reac-
tions. Further, this representation allows the definition
of molecular wavefunctions of sufficient accuracy to
consider- their use in a broad spectrum of quantum
mechanical calculations of molecular properties.

This paper is a study of the application of this tech-
nique to a space spanned by an incomplete, yet not
minimal, set of Gaussian-type orbitals (GTO’s).2 How-
ever, the technique is not restricted specifically to these
functions.

Initializing self-consistent field (SCF) calculations
with functions where each coefficient is set to zero or
with functions chosen by crude techniques often pro-
duces instabilities in the numerical procedure that
causes a divergence of the calculation. (An example of

this is when a 73|73|3 basis set was chosen® for CH,0,
a divergence resulted requiring hand manipulation of
the starting eigenfunctions.) This results from the fact
that the guessed initial wavefunctions differ too greatly
from those that would be calculated in the SCF proce-
dure. Therefore, if the equivalent orbitals calculated
by the procedure described herein are an excellent
approximation to the SCF wavefunctions, then the
equivalent orbitals should constitute a foolproof start-
ing point for the SCF procedures. This should not
only cut down cycling time significantly, but also obvi-
ate the possibility of a divergence. )

The study of the electronic structure of families of
molecules in terms of a set of simple parameters should
uncover regularities in the variation of these parameters
during chemical reactions. It should then be possible
to derive a set of ‘“iiber-quantum mechanical rules”
that subsumes the framework and mathematical terms
used to derive the values of the parameters. The tech-
nique presented herein, coupled with the rules yet to
be discerned, will uniquely determine the molecular
electronic wavefunction. The parameters sought are
the bond polarity coefficients (a measure of the ionicity
of the bond), hybridization parameters (if necessary),
and the proper atomic orbital (A.O.) basis functions.
(A more complete discussion is given in Ref. 4, pp.
95-167. Note, however, a slight change in the definition
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of hz.) In other words, the change in the atomic orbit-
als and ionicity of bonds, the net charge on each atom,
ctc., due to substituent exchange reactions and molecu-
lar bond formation are determinable. Within the mathe-
matical framework of this technique, it is also possible
to sec the change in the calculated expectation values
of physical quantities as a result of variations in each
defined parameter. Moreover, it is hoped that optimiza-
tion of only a limited set of parameters by fitting to
experimental data will produce meaningful results.

Throughout this study, the water molecule has been
used to demonstrate this mathematical technique as
the molecule has a well-known geometry (bond angle=
104.5°, O-H distance=0.95721 A), has good symme-
try, is composed of sigma systems alone, and is small
enough for descriptive purposes and calculational sim-
plicity.

THE DEFINITION OF EQUIVALENT ORBITALS
USING EXPANDED BASIS SETS

The localized orbitals of any polyatomic system are
specified by the techniques derived in other publica-
tions.*~7 The localized orbitals represent the bonding
orbitals that would occur in a one- or two-center two
electron bond as if only those two atoms (those two on
which the bond is defined) existed in the molecular
system: In other words, orbital overlap between differ-
ent centers is neglected allowing a definition of bonding
orbital systems with the important property that the
angular momentum of the bonding orbital hybrids,
measured about that bond axis, has only integral val-
ues. Previous papers offered the techniques for delineat-
ing localized orbitals dealing with sigma systems alone,!
sigma and pi systems*7 and the use of d orbitals in
pi*® bonding. Nonetheless, the equivalent orbitals of
any polyatomic system are given in terms of the matrix
of the localized orbital coefficients, Iy, specified in
terms of a minimal basis set, ®, (a column matrix of
functions), the overlap matrix, A,, and the overlap
matrix expressed in center block diagonal form, A,
(that in which all intercenter overlap is set to zero).
These were given by the following:

ll:r'Eoz FOAMO.ﬁAm—O.SQmE Fm(bm, (1)
where
WgoWro" = FoAomIoT=1. (2)

However, we now wish to express the equivalent or-
bitals in terms of basis sets which are larger than
minimal. We define the matrix expressing the expan-
sion coefficients, Q, of the minimal basis set orbital in
terms of the expanded basis set by the relationship

®,=Qd. 3)

The overlap matrix A over the extended basis func-
tions is given by A=®®7. The center block diagonal
form overlap matrix, Ao, is defined in terms of A by
setting all overlap between centers equal to zero. Thus,
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the equivalent orbitals are W' gy=Te®. These have the
property expressed by Eq. (2).

The extension of the above to handle extended basis
sets is not unique. At least two methods are possible
which obey all of the dictates of the localized representa-
tion. The first, referred to as Method 1, is that the
equivalent orbitals are given by

Te=T[QAQ7]Q;. (4)

The secohd, referred to as Method 2, is given by the
following:

Lo=TQA,2412, (5)

Unlike the Q; matrix of Method 1, the Q, matrix is
constrained to have the property

Q2A0Q2T= 1. (6)

[In order to convert an arbitrary matrix, Q, with the
proper dimensionality into a matrix obeying Eq. (6),
it is necessary to determine the real, symmetric, and
necessarily positive definite matrix S=QA¢Q7. An or-
thogonal transformation exists that diagonalizes S to
produce Sp, a diagonal matrix, by the equation U7SU=
Sp, where UTU=UU”=1. The matrix Q is therefore
given by USD—”2UTQ= Q where (SD'—l/z) 0= (SD)“,——II2'
If S is not positive definite (all positive elements on
the diagonal of Sp), a linear dependence exists in the
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Fic. 1. A plot of the Q-matrix elements representing the atom
optimized ([0 =015, O® =025, A =02p), the Method 1 molec-
ular optimized ( & =015, + =025, X =02p), and the Method
2 molecular optimized ( vy =015, 3 =025, X =02p) coeffi-
cients versus the logarithm of the GTO orbital exponent. The

02s and 02p molecular values are shifted as explained in the text.
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TaszE L. The calculated values of the atomic orbital expansion coefficients, and bond polarity coefficients, %z,
for the two types of regression objective functions for Method 1 and Method 2.

Molecular optimized expansion coefficients

Basis orbitals Atom optimized® x?= energy = minimum x2=2 | T'g—T [2=minimum
expansion -

Type Exponent coefficient Method 1* Method 2¢ Method 14 Method 2
O1s 2200. 0.0056905 0.00560020 0.00565963 0.00597832 0.00258446
332.2 0.0416845 0.04108432 0.04147895 0.04240754 0.03381572
76.93 0.1802574 0.17770527 0.17944961 0.18083784 0.16550481
21.74 0.4568924 0.45445548 0.45608017 0.45979618 0.43981247
6.773 0.4414585 0.44764652 0.44410411 0.45195510 0.43885621
1.103 0.0362224 —0.03027089 0.01001790 —0.03915050 0.06644444
0.3342 —0.0087322 —0.09937294 —0.03883358 —0.11774267 —0.01850274
02s 2200. —0.0012856 —0.00111838 —0.00143130 —0.00005230 —0.01203547
332.2 —0.0097375 —0.00751682  —0.00773884 —0.00267910 —0.03214586
76.93 —0.0431581 —0.03800747 —0.04363449 —0.01654913 —0.07936922
21.74 —0.1371344 —0.12473147 —0.11948880 —0.07285914 —0.14404537
6.773 —0.1937388 —0.18530559 —0.20404317 | —0.13183490 —0.19255958
1.103 0.3821590 0.49148061 0.52987292 0.40975074 0.72954958
0.3342 0.6418389 0.68112305 0.61226036 0.65528994 0.66010571
0 2pf 8.356 0.1193404 0.11371348 0.11371348 0.11371348 0.11371348
1.719 0.4707758 0.43183250 0.43183250 0.43183250 0.43183250
0.3814 0.6223083 0.66179180 0.66179180 0.66179180 0.66179180
His 4.239 0.0748200 0.19495215 0.09040911 0.15908125 0.11179900
0.6577 0.4159000 0.63903676 0.42496232 0.44647008 0.55074024
0.4183 0.6365000 0.33248188 0.57252355 0.59125398 0.60701806

2 The oxygen exponents were obtained from Whitman (Ref. 10). The
hydrogen coefficients were chosen by the author.

b 34 (calculated) =1.3270119, energy (final) = —85.0432623,
(SCF) = —85.058144296.

€ hz(calculated) =1.19905231, energy (final) = —85.0273505 (note: this

energy

proposed basis set. ] The molecular geometry and bond
polarity coefficients usually determine the localized or-
bital coefficient matrix uniquely, the orbital exponents
fully determine the expanded set basis function to be
used, and the basis function expansion coefficients fully
specify the matrix Q. Therefore, the equivalent orbitals
are determined in terms of these parameters in addi-

tion to the hybridization parameters (if needed).

Molecular geometry can be obtained with excellent
accuracy from microwave spectroscopy and other tech-
niques. However, it is not obvious that any experimen-
tal technique can yield directly the values that should
be used in determining the proper bond polarity coeffi-
cients and atomic orbital expansion coefficients for use
in quantum mechanical calculations where great accu-
racy is needed. In contradistinction to this statement,
there exists a series of papers®? striving to perform the
extraction of the proper localized orbital bond polarity
coefficients from experimental data. See in particular
Ref. 8. _

The atomic orbital coefficients (the elements of the
Q matrix) are those that have been calculated? as
optimal for the respective atoms in their ground state.
Further, the basis set orbital exponents are the atom
optimized orbital exponents. Consider the data of Whit-

has not converged fully).
d hz(calculated) =1.26904456, x2=9.48 X10-5, E(final) = —80.621414.
€ hz (calculated) =1.20565352, x2=1.393 X104
f These coefficients are the same as the SCF due to the form of the SCF
molecular orbital completely filling one Op A.O.

man,'® who optimized several basis sets for each of the
first row elements. To good accuracy, his predicted
orbital exponents {{;} are given in terms of the atomic
number, N, by the relationship

log¢;=m logN+b;, (7

where the slope 7 is 2.2340.12 and the intercept val-
ues {b;} are readily calculable from the orbital expo-
nents listed for oxygen in Table I. If the value of his
atomic orbital expansion coefficient is plotted against
the logarithm of the orbital exponent, a group of curves
appear that have shapes similar to the radial plot of
customary 2s and 2p orbitals (see Fig. 1). Later in this
work it will be shown that it is possible to relate the
change in the predicted values of the Q matrix coeffi-
cients to a shift in the valence orbital nuclear charge
due to the effect of the bond polarity coefficients upon
the total charge of an atom.

The remaining set of parameters are the bond polarity
coefficients, which express the total charge resident on
one atom of a two atom bond in the localized representa-
tion. (This is exclusive of hybridization parameters
which are discussed more fully elsewhere.*” These are
undefined in the water molecule.) As an example,
consider a two center bond ¥=a¥,(s)+va(p)+
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0.35 0.87 1.39 1.81 2.43
LOG (GTO ORBITAL EXPONENT)

FiG. 2. A plot of the calculated molecular electronic energy
as a function of /7 value using atom optimized orbital exponents
and expansion coefficients for equivalent orbitals calculated by
Method 1 and Method 2. Also shown are the results of complete
molecular optimization of the Q matrix as well as the 4z value.

v2¥s(s, p); the total charge residing on atom A is
given by hz=oa’+v. since overlap between orbitals
on different centers is nonexistent. Once sufficient data
on a sufficient number of molecules is obtained it is
possible to calculate the bond polarity coefficients from
quantities, x, which for historical reasons shall be called
electronegativities, by the relationship

hz= hAB= 1'O+K(XA—XB)- (8)

hap determines the relative proportion of charge resid-
ing in the hybrid orbital on center A. Clearly, in a two
electron bond, the net charge to reside on center B is
(2—hap) =hpa (which in the above example is v4?). A
population analysis in the localized representation de-
pends solely (presuming molecular geometry is well
known) upon the values of the bond polarity coefficients
and hybridization parameters. Moreover, this repre-
sentation offers an outstanding visual picture since the
charge and bond order matrix in the localized repre-
sentation is always unique and often diagonal.

"~ THE USE OF GAUSSIAN EQUIVALENT ORBITALS

AS STARTING EIGENFUNCTIONS IN
HARTREE-FOCK (SCF) CALCULATIONS

If the equivalent orbitals are good approximations to
the wavefunctions predicted by Hartree-Fock tech-
niques, then these functions should constitute an ex-
cellent starting platform from which to initiate SCF
calculations. The technique described herein has been
applied successfully to over 30 different large mole-
cules.""% In every instance the calculation proceeded
quickly to completion without a divergence or even
any hint of numerical instability.

To show the effect of using each of the methods de-
scribed in this paper in starting a self-consistent field
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calculation, the water molecule was run using (a) zero
eigenfunctions (those with all coefficients preset to
zero), (b) a set of molecular optimized equivalent or-
bitals (described fully in the next section of this paper),
and (c) equivalent orbitals calculated from atom opti-
mized Q matrix coefficients using three examples of
Method 1 and three examples of Method 2. In (c) the
values of 4z that minimized the calculated electronic
energy and the atom optimized Q matrix were used. The
remaining two examples of each method are those in
which the values of % are taken to be 0.2 in magnitude
on either side of the atom optimum value. How the
optimum values differ between Method 1 and Method 2
can be seen in Fig. 2. In every case, convergence was
obtained in half the time taken by using the zero
eigenfunction starting point. Further, convergence after
the first two cycles proceeded at a rate depending solely
upon the energy difference between that calculated in
that cycle and the SCF energy. In no instance was an
attempt made to use any of the interpolation schemes
that had been shown to hasten convergence! since this
isirrelevant to the issues at point. Table IT is a summary
of the results of the calculations described above.

THE CALCULATION OF MOLECULAR OPTIMIZED
EQUIVALENT AND LOCALIZED ORBITALS

Having the results of the LCAO-MO-SCF calcula-
tion, it is possible to ask the question: What values
should have been chosen in the localized representation
for the bond polarity coefficient(s), and atomic orbital
coefficients (the Q matrix elements) to give the best
possible “fit” to the SCF wavefunctions, subject to the
constraints of the limited basis set? The basis trunca-
tion error (that error in the wavefunction due to the
fact that an incomplete basis set is used, or equivalently,
one which would not exist had a complete set been
used) will introduce errors in the calculated values of
these coefficients that will tend to mask the regularities
that could have been shown in a straightforward manner
had the truncation errors not existed. The SCF proce-
dure minimizes the calculated total electronic energy
while subjecting itself to the limited basis constraint.
It compensates by shifting values that would have been
calculated with complete basis sets simply to force the
energy to be as low as possible. The techniques of the
localized representation offer rather stern constraints on
the form of the wavefunctions. If it is possible to
exactly match the SCF functions using complete basis
sets, one should not expect an energy for the highly
constrained equivalent orbitals over the limited basis
set LCAO-MO-SCF functions to be as low as the SCF
energy. However, the calculated energy should be a
direct measure of the validity of the chosen equivalent
orbitals. Therefore, it is possible to take as variables
in a multiparameter nonlinear regression analysis, the
bond polarity coefficient and the Q matrix elements,
using as a single objective function in a minimization
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LOCALIZED ORBITALS.
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of squares, the expression

x*= | energyr,(hz, Q) — Escr |2 9

Details of the calculational and numerical techniques
are given in the Appendix of this paper.

It is also proper to investigate the regression of the
parameters of the localized representation on an objec-
tive function

x*= 2. | (Tsor) — (o) is [,

where the power, a, to which each term is raised, is 1,
2, and 4.

The resulting coefficients and final objective function
values of the totally unconstrained problem are given
in Table I for key examples of each calculation.

The results for a=1 and 4 did not differ significantly
from the a=2 calculation so these were deleted from
the table. In each case, the calculated energies of the
final equivalent orbitals (a=1, 2, 4) were so high that
it is concluded that this specific technique is unsuitable
for the calculation of the proper values of these param-
eters if these are defined as the “molecular optimized
localized representation coefficients.”

A calculation was done varying only the kg values
using Method 1 or Method 2; the minimum energy was

~obtained for k;=1.274 and 1.200, respectively. The

dependence of the calculated energy upon %z with each
method is shown in Fig. 2. Figure 2 also shows the
final “molecular optimized” k; values. It should be
noted that if partial optimization (e.g., varying

- alone) is all that is performed, Method 1 is absolutely

unsatisfactory, whereas Method 2 is satisfactory. This
has been demonstrated in calculations on much more
complicated molecules.’

Figure 1 is a plot of the expansion coefficients as pre-
dicted by an atom optimized problem vs the logarithm
of the orbital exponent. Also given on this plot are the
results of the complete optimization calculation in
which the points referring to valence orbitals are
shifted along the abscissa. To good accuracy, the pro-
cedure given in the following paragraph can be used to
advantage.

The orbital expansion coefficients to be used are
identical to those of the atom optimized values. How-
ever, the set of orbital exponents are shifted from the
atom optimized set by an amount that is calculated
from Eq. (7), thereby taking into account the change
in net nuclear charge. This change is due to the fact
that the sum of all of the % values for each atom do
not sum to give the number which are present in the
ground state atoms. In water, there are two abortive
bonds (unshared electron pairs) as well as the net
charge of 7z in each of the two C-H sigma bonds. The
total charge in the valence orbitals plus that of the
inner orbitals (in this case, two electrons) is 6+ 2kj.
Had 7z been calculated to be 1.000, the atomic config-
uration would have been achieved. However, we see a
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net shift in “atomic number,” N, in the amount
2(hz—1). This shift in ¥ is related to a shift in the

optimal orbital exponents by the relationship [derived
from Eq. (7)]

log¢,—logi 0= 2.23{ log 8+2(hz—1)]—log8}. (10)

Essentially equivalently, coefficients can be chosen from
the original curve using the atom optimized orbital
exponents taking into account the shift along the curve
due to the deviation of the calculated sum of /4y values
from the atomic case. In a sense, this may be inter-
preted as an exponent optimization. The inner shell
orbitals are seemingly unaffected by the shift in charge
except for slight changes in the coefficients of the lower
magnitude orbital exponents due probably to the in-
duced nonorthogonality between the valence and inner
shell orbitals. :

It can be seen that Method 1 and Method 2 yield
equivalent orbitals of sufficient accuracy to consider their
use in precise quantum mechanical calculations as long
as complete optimization is accomplished. It is felt
that Method 2 will prove to be extremely useful when
optimization with respect to the bond polarity coeffi-
cients alone is accomplished. Even though the regres-
sion techniques (outlined in the Appendix) are con-
sidered to be quite efficient, the cycling required for
convergence is roughly two orders of magnitude slower
than the SCF procedure, even without interpolation
schemes that would speed the SCF calculations even
further. Larger molecules could take an unreasonable
amount of computer time even on today’s largest and
finest computers (for water on a CDC 6400, the SCF
cycling takes approximately 300 sec; the regression,
roughly 30 000 sec).

The primary result of this study is that to good accu-
racy, molecules can be described mathematically in the
localized representation, and in this representation the
parameters normally used in conversation between
working chemists are the parameters used in the quan-
tum mechanical calculations and the variation of these
parameters upon molecular bond formation is consistent
with current notions.
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APPENDIX: ROTATIONAL DISCRIMINATION
NONLINEAR REGRESSION ANALYSIS®

Consider a single-valued differentiable function, Q,
given in terms of a sum of squares of differentiable
real functions { f;},7=1, - -+, n of a set of real variables
x [x:= (x);] and a set of constants { f;}, j=1, - - -, m,

such that
Q=322 [ fi(x)—foi I2. (A1)
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When a set of initial values is known for X, i.e., X, it
is possible to calculate a new set X'=X¢+ /X, & a con-
stant, giving a lower value of Q by use of the equation

(@0/0x) sx= —Q/0x. (A2)
Differentiation of Eq. (A1) twice yields
[0Q/9x];i= 2; Lfi(x) —fo;1(3fi/0x:),  (A3)
[9%Q/0x*Ju= EJ (9fi/0x:) (0f i/ )
+ (fi—foi) (0%fi/dx:0xc) . (A4)

Employing the Gauss-Newton approximation (the sum
of all of the second terms the right-hand side in the
above equation is zero), we define a matrix G such that

(G) = X (9fi/0x:) (8fi/dx) ~[9*Q/0%*Ju  (AS)

* which we call the approximate Hessian matrix. Since

G is a real positive semidefinite matrix, there exists an
orthogonal matrix U which diagonalizes G; thus,
UT’GU=Gyp, (A6)
where Gp is a diagonal matrix. Equation (A2) is now
expressed
Gox=—aQ/ox. (A7)
Therefore,

[UrGU][U"sx]= —[U"(8Q/9x) ]

which allows definition of two matrices 5y=U76x and
8Q/9y=UT(8Q/0x), so that Eq. (A8) is expressed:
Gpy= —9Q/dy. A diagonal matrix Gp® can be defined
where (Gp?)::=1.0/(Gp).; if and only if (Gp); is not
zero (or above a defined threshold for numerical rea-
sons), and (GpF):;=0.0 otherwise. Further, (dy). and
(0Q/dy); are defined to be zero when (GpF):;=0.0.
Then, 6y=—Gp?(dQ/dy) so that

0x=UGpUT(3Q/0x). (A9)

In the Fariss and Law treatment® an upper limit, 2
(consistent with the definition X'=X,+ kX calculated
from the previous iteration) was placed on the magni-
tude of each (8y)., necessitating a single parameter
minimization on k. For the single parameter search, it

(A8)

3221

is assumed that Q=Q(%) takes the form
Q= (h—ho)®+Qo. (A10)

The evaluation by central differences, of Q, dQ/dk=
Dy, 8%Q/dh*=D,, and #Q/dk*=D; at a base point kq is
then carried out. It is not difficult to show that

h‘—ho= DlDz/(Dzz—Dl.D;g) (All)
and

B=(2Ds*— D1Ds) / (D?>— DyDs). (A12)

Using the above, convergence can be rapidly achieved.
The derivatives are evaluated numerically by the fol-
lowing:

Di=[ f(ho+6hk) —f(ho—6h) 1/ 26h, (A13)
Dy=[ f(hot5h) —2f (ho) +f (ho—5k) 1/802, (A14)
Ds=[ f(hot+26h) — 3f (ho+6k) + 3f (ho) — f (ho— k) 1/6H.

(A15)
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