A Technique for the Design and Construction of
Arithmetic and Control Processors

John H. Letcher
Department of Computer Sciences
University of Tulsa
600 South College Ave.
Tulsa, Oklahoma 74104

Introduction

We have seen the development and use of both Complex Instruction Set (CIS) and Reduced
Instruction Set Computers (RISC). These CPUs have been made the basis of most of our
workstations and personal computers. These machines are constantly being made larger and faster.
It would seem that we are driven by an insatiable thirst for such things. However, if we look
critically at what we are doing, we would find that we typically have bought far too much computer
for most of the jobs that we perform. Upon reflection, we find that it is only a few highly intensive
tasks that drive us to buy the more expensive machines. Is there another way?

We have seen the development of parallel processing computers imbedded with sets of
. idendcal units communicating within rather constraining architectures. Is this the direction that
parallel processing is going to achieve greater performance?

Why not combine these ideas and produce a system with a number of different processors;

yet, select the processors so that these are balanced one with the other and that each suited to its own
tasks. Some of these may be the general purpose computers that we buy today, but for other tasks,
custom processors are needed. Probably, these custom devices have not yet been designed.

This paper was written with two purposes in mind. These are:

D To show how one custom processor is specified, designed and implemented
in hardware. This will show that the design of truly custom processors is easy
and practical.
2) To show how sets of these processors (which may be quite different one from

another) can be connected and made to play in concert one with the others with
absolute assurance that a type of error called metastability cannot occur.

A custom processor that we propose consists of a function module completely surrounded by
extremely high speed latches. The custom hardware function module could be build entirely of
memories yet the function modules could be anything that obeys a simple set of rules. Thesc do not
need to be constructed out of the customary digital logic circuits, AND, OR, NOT, etc.

How the function modules (the part that does the work) are implemented in hardware,
although interesting, is not the subject of this paper; rather, as long as any function unit can accept
a stable set of inputs and produce a stable set of outputs at a known time after the inputs become
stable, then the function module is suitable for our purposes. The technique which is to be presented
herein is to do away with the nemesis of sequential circuits, metastability. '

I doubt that many DDJ readers would want to employ the ideas in this document to reproduce
a 80486 chip, yet perhaps many would like to design and build a single small inexpensive processor
suited to a users needs. As an added benefit, it would be desirable to employ techniques that allow
the processor to be incorporated easily in a larger unit that employs a number of other free running
devices.

Why Custom Processors?

Analyze the tasks performed by your workstation. If you characterize the tasks performed
by the workstation or personal computer class machine, then you could probably divide all of these
tasks into two categories: 1) those that take a great deal of time to execute (relatively speaking) or
those that require a modest amount of time yet are executed over and over, and 2) all those tasks that
do not fall into category 1. Chances are, those tasks in category 2 will be handled well by
commercially available CIS or RISC CPUs and that high level language compilers are quite adequate
for the task of preparing the executable programs for them (even though the compilers, themselves,
may fall into category 1). If you determine the total time required to perform all of the tasks in
category 2 you will see that you could have gotten along very well with a small and inexpensive
CPU. We see now that it is the category 1 tasks that drive us to want faster devices. Then, why not
perform these tasks on separate asynchronous processors that can be designed from the ground up
to perform their tasks well and coexist within the same system as the conventional (primary) CPU?

All processors are not well suited to all tasks. It can be shown that many of the commercially
available processors are not ideally suited for well known tasks; quite the contrary, in application such
as the execution of LISP, FORTH and Postscript programs, CPUs such as the 80386, Sun Sparc and
Vax computers are profoundly trounced (by order of magnitude) by the TI Explorer which employs
a chip specifically designed for its own task. Adding a custom processor to this system was certainly
- worth the effort.

There are many jobs that we ask our computers to perform that are too small or too simple
for large and expensive CIS or RISC CPUs, yet make enormous demands upon system resources.
An example is the service requirement of a serial port communicating with another device at 115000
baud*. Here, interrupts are arriving at a rate of 60 psec per character. Servicing an interrupt every
60 psec consumes most of a 80386 computer. An ancillary 8088 computer or even smaller control
processor would handle the job nicely, producing only one interrupt for the 80386 at the end of a long
block or none if the software is status driven. Adding a custom processor could relieve the burden
from the primary CPU; its presence would be desirable.

*Even the original IBM serial port boards as well as most later boards use the 8250 Universal
Asynchronous Receiver Transmitter (UART). Other boards use the 16450 or equivalent. All of these
are pin for pin compatible and software compatible. A clock exists on the board that is divided by
the contents of a UART register to produce all of the customarily employed baud rates, for example
9600 baud. This divisor is contained in a register which may be written by a user program. By
setting this divisor to 1 the baud rate of 115000 baud is achieved. This produces rather snappy inter
processor communication and this is very very inexpensive to implement.

Some newly designed RISC chips have produced programming headaches. In the attempt to
achieve outstanding performance levels, designers are producing devices that are not suited to a broad
spectrum of jobs, yet are sold as general purpose devices. Let’s look for a moment at one of the
newer RISC processors, the Intel i860. This processor is capable of outstanding performance if the
software for a task is perfectly prepared to account for the fact that the i860 can perform a pipelined
floating point (FP) load (a core instruction) plus a dual pipelined FP add and a FP multiply, every
clock. If you count FP load as a floating point instruction (which this author does), then it is possible
to perform 100 million FP instructions per second (MFLOPS) in a 33.3 Mhz i860. However, no one
is achieving anywhere near this number from software produced from high level languages. So what
is the problem? One of the answers is that the pipelining structure of the i860 has made it extremely
difficult to translate high level languages into code that even comes close to keeping the pipelines
full. As a result, performance suffers. Seldom is 10 MFLOPS achieved in practice. This is less than
10% of theoretical performance. Is it possible to reorganize (redesign) the instruction set (and some
of the internal data paths) to give better access by high level languages? We believe so, even though
it has not been done. Nevertheless, specialized jobs such as performing wavelet and fourier
transforms justify the effort to produce software specifically tuned to perform these tasks. If the i860
is relegated to the task of performing only a few important and complicated tasks, then a companion
general purpose CPU is totally freed to do other things. Some people feel that the i860 is a failure
as a general purpose computer. If this is true, then this can be auributed only to the difficulty of
adapting general purpose software to run well on it. No one faults the high quality of the hardware
itself. If we were to look at processors like this as individual function modules that we will place,
as needed, in a larger parallel environment, then in this role the 1860 and other custom function
modules will prove to be stunning performers. Furthermore, the possibilities for other custom
processors designed for a predefined task appears to be endless.

There are many tasks which conventional CPUs are asked to perform that could be relegated
to a large number of separate parallel processors. The interaction protocol could be a simple BUSY-
DONE semaphore. Candidates for such units include the calculation of fourier transforms, the
calculation of wavelet transforms and carrying out complicated manipulation of graphics pixel values.
Imagine preparing a data set of values and placing it somewhere accessible to the new custom
processor. A BUSY flag is set and the new processor reads the input values and calculates a set of
output values, placing these either on top of or next to the input values; then, the DONE flag is
returned. How the new processor carries out its tasks is of no concern whatsoror to the requesting
processor. The new processor may possess whatever kind of clock it needs and this may be totally
unrelated to that used by any other. It may go as fast or as slowly as the function module designer
wishes and the host cares only about when the other processor is finished.

Incorporation of custom processors into existing workstations could be accomplished easily.
This need not be by the conventional coprocessor route. Additional boards with shared memory with
the host CPU seems to offer the most promising method of incorporating a custom processor to

perform a specific task. The design and implementation of these processors is within the reach of
many DDJ readers.

Custom Processors

Professor Carver Mead® stated that he felt that a 10,000 fold increase in the cost
effectiveness in computing would occur in the next decade if the ability to produce custom processors
are placed in the hands of all design engineers including those who do not work for the large silicon
vendors. His vision has led to the development of silicon compilers, which are computer programs
which translate the definition of a processor into a form that makes it possible for a computer to
construct custom integrated circuits. He proposes stating the processor problem in terms of a set of
equations; then, a custom processor can be produced by sending machine readable medium to a
company that will build the custom processor. Herein, we show a way to accomplish the same task
without the services of the manufacturing company.

Clearly, the statement of the function of a control processor must be established before the
design work may begin. However, it would be preferable to use a suitably general technique that
allows this specification to be implemented through the use of commercially available microcircuits
and through the use of the equipment found in essentially all electronic development laboratories (PC
computers and PROM programmers).

In order to successfully employ these techniques it is necessary to review some basic
definitions. Many words are used in different ways by different people. The definitions that will be
employed are given below.

Process Abstraction

A lesson to be leamed from LISP and FORTH (and their descendants, for example
POSTSCRIPT) is the power of function abstraction by allowing definition of new functions or words
as time goes on. In terms of a small set of primitive operations, it is possible to define new, more
generalized tasks in terms of the already defined ones. Soon, we may forget that the original
primitives exist and deal only with the definitions of the new functions. We wish to do the same for
hardware entities except that our primitives are a set of discrete asynchronous processors. We now
wish to define a set of characteristics of an engine so that we may employ the same techniques to
build this module into a larger framework.

The Definition of a Finite State Machine
A finite state machine is a 5-tuple:

M= (Syx,Y’g,So)

where S is a finite state set of states {S;} ;
X is a finite set of input symbols {X;} ;
Y is a finite set of output symbols {Y,} ;
g: S xX =>8§, the next state function ;
S, is the designated state called the initial state.

Note: 1) All states are recognizing states.
2) The values of all X; and Y, are either 0 or 1.

There always exists a complete State Table:

g X, X,
So S, Y;
S,

The input to the above defined machine is a finite sequence of input symbols, X; X;

Let us define the number of input values X to be N, the number of output values Y, to be
N,, and the number of states to be Ng. It is convenient to redefine X and Y as binary numbers, a
concatenation of the binary values of X; and Y; taken as bits, to construct unsigned binary numbers,
ie.,

1 o
X = Y X, +«2' ad Y = Y Y x2"1.

i=1 - i=1

Multiplying by 27! shifts the value of X; into the proper position so that all of these terms may be
XORed (which is an ADD without carry) to produce the value of X, a number.

The maximum value of X is 2™ - 1 and of Yis 2% - 1 . The minimum values of X and Y are
zero. The states are numbered starting with 0 (for the initial state) and extending through the positive
integers as far as needed.

Finite State Diagrams

The action of a proposed processor must be defined, a priori. This definition or description
may be given in several convenient ways. The first is a graphical approach and the result is a finite
state diagram. This diagram gives a visualization of the action of the processor and its response to
all possible combinations of inputs thereby producing the desired outputs. These diagrams are given
in terms of defined states and activities. The processor will be driven and synchronized with other
activities by its being fed a sequence of clock pulses. Between each sequential pair of clock pulses,
an activity occurs. This activity calculates the values of the output signals which will be presented
as outputs (simultaneously, at the next clock pulse). At the start of each activity the processor is
found in a state. Multiple states (i.e., different states) are required in situations where the recipes
used to calculate output values from input values may differ from activity to activity depcndmg
upon what has happened before.

The action of a processor can be described as an activity which occurs within the
processor after each clock pulse. This activity involves using the observed input signals and,
with full knowledge of the state in which the processor found itself at the time of initiation of

this activity, the output signals of the processor can be calculated. After the activity has been
completed, all signals within the processor are quiescent (not changing in value). Therefore, at
any time from the instant at which all signals stabilize until the next clock pulse, the internals
signals of the processor do not change. A snap shot of the internal values may be taken anytime
during this time interval. The configuration given by a subset of these signals defines a state.
That there are different states within a processor implies that, for a given set of inputs, the
desired outputs will perhaps vary, that is, from state to state.

Graphically in a finite state diagram, a state is represented by a circle and an activity is
represented by a directed arrow which extends from one state to another. A complete finite state
diagram is the set of all possible states of a processor and all possible activities that could occur
with all combinatons of inputs. Each activity belongs to a state. In graphical form, each activity
starts in one state (the foot of the arrow) and ends in a state (the head of the arrow). These two
states may or may not be the same. To complete the definition, it is desirable to label each
activity, S: X:Y, where numerical values for S, X and Y are given. As will be shown later, this
diagram alone, is sufficient to design and build the proposed processor.

Combinatorial Logic

The production rule Y(t+€)::=f(X(t)) is an algorithm that states that in combinatorial logic
(which is normally made up of the usual AND, OR, NOT, XOR, etc.) that the input signals to
this logic module (which may be represented by a set, X, of binary values) produces a set, Y,
which represents the binary output values. € is a non zero time delay. Combinatorial logic may
be represented by a finite state diagram with only one state and a set of activites extending from
this state folding back onto this state, one for each of the defined input values. We find it
convenient to label each of the activities with a number, according to the binary value, X, and
listing as a part of the label the binary value of the output values, Y, thus: 0:X:Y.

The Finite State Equations

It is seldom, if ever, possible to design an arithmetic or control processor through the use

of combinatorial logic, only. Under certain circumstances, depending upon what has happened
before, the processors response to an input may depend to a great extent on its history. Under
the action of its inputs, a processor will move from state to state and can best be represented by
the situation calculus® in which S'=result(e,s). To keep a consistent nomenclature, we prefer
to express our finite state equation thus: Y(t+1) == f(X(1),Y(1)).
This states that the outputs of a processor at time, t, plus an increment, 1, is obtained from the
values of the output at time t combined with the inputs at time t according to some defined
recipe, f. This production rule is sufficient to represent most arithmetic and control processors.
A finite state diagram for such processors would consist of a set of activities and states. Again,
the activities are labeled with each of the defined inputs and the defined outputs. For any
activity, the calculation of the outputs from the inputs is given by the production rule, f, which
is a function of the input values X and the state number to which the activity belongs.

Each processor must be initialized and this state in which the processor finds itself at the
start of time shall be numbered, 0. All of the others may be labeled with a number starting from
one up through as many states that exist. An important point that can be made is that any finite
state diagram may be linearized. That is, each can be redrawn so that the states are shown along
a single line. No new information is added and the fact that one state is tagged with one number
or another is not important at all.

A finite state diagram may be reduced if there exist two states in which the action of all
of the activities belonging to state is identical to those of another state. The diagram is reduced
by redefining the activities pointing to the higher number state to point to the lower number state.
The higher number state is simply erased.

A finite state diagram can be abstracted by saying that this is a processor characterized
by three numbers: the number of input states, N;, the number of output states and N,, and the
number of states in the diagram, Ng and the production rule. Therefore, the firmware for the
device which implements such a processor can be calculated in an automatic way from N, N,
N, and a statement of the production rule, f.

The Hardware Device®®

Let us assume that the designer has in hand the three parameters, N;, N,, Ns, and the
production rule, f. It is possible to reduce this to hardware by the addition of two input signals:
-a clock and a reset signal. Now, our device can be represented as a function module with inputs,
X (as before) plus the clock and the reset pulse. The outputs from this device is the number, Y,
as before. In our production rule, a defined time delay, t, was defined. In order to implement
this in practice, it is necessary to present to our device a clock, which is a sequence of pulses
with any reasonable duty cycle (i.e. it may be a square wave with a 50% duty cycle, or a
sequence of extremely narrow pulses with a very low or even very high duty cycle). The
distance between the rising edge of the pulses, however, is defined to have the value of at least
1. This is represented simply in hardware as shown in Fig.1. This consists schematically of only
two devices, a latch and a function module which may be a memory.

To refresh the readers memory, a latch is a device with multiple matched inputs and
outputs. In operation, it is assumed that the input values to this device are stable over a very
brief time interval before and after the rising edge of a clock pulse that is fed to this latch.
During other times, the input values to this latch may do anything they please. On the rising
edge of the clock pulse, the circuitry inside the latch sets the values of the outputs (within a
small but finite time delay) to match the values that the inputs had over the brief interval before
the clock pulse. After the time delay of the latch, the outputs of the latch are set to the
appropriate values and fixed. Therefore, they remain invariant until the latch receives another
clock pulse. The reset pulse overrides the normal action of the latch and sets the output values
of the latch to be all zeros. This signal will be used by us only to initialize a processor.

The memory represented in Fig.1. is any device which has a set of inputs and a set of
outputs where the set of inputs represents a binary number, a location within the memory, which,
after a time delay A, will cause the outputs of the memory to be set to the defined contents of

that memory. This deceptively simple looking hardware device will implement any processor
that can be described by the situation calculus. The latches shown in Fig.1., may be implemented
through the use of shift registers, parallel entry shift registers, or a member of other types of
devices that carry out this function. The memory, shown in Fig.1., may be implemented through
the use of commercially available ROMs, PROMs, EPROMs, EEPROMs, RAMs, PALs, HALs,
PLAs, and other devices that carry out this function.

Properties of the Device

We may view the action of this device in terms of the timing diagram given in Fig.2.
The clock is an asynchronous or synchronous stream of pulses subject only to the restriction that
the time period, T, must be greater than € + A. Certain important facts should be recognized: 1)
the output signals are stable except from time t, 10 t, + € after the clock. (Here, t, is defined as
the time at which the rising edge of a clock occurs during this cycle.) 2) input signals need only
be stable between (t, - €,) to (t, +€,) which is a small fraction of total time. 3) the clock must
have a period greater than the sum of the delays of the latch and that of the memory A+ g, but
it may have any larger value.

It should be noted that such a device can operate over a very wide range of clock
frequencies and that the clock may be entirely asynchronous in its operation. It is perfectly
allowed to use the output of a finite state engine to adjust the clock rate for later tasks to produce
a desirable effect of giving a processor longer to carry out certain tasks that it does to carry out
others. -

It should be noted that a device of this sort has the ability to regularize signals. This
means that over a time period between clock pulses an input can be delayed and presented with
the new value at precisely a defined time value. This makes it possible to define sets of finite
state engines, processors working independently and in parallel, yet with the ability to be easily
synchronized. Furthermore, these may be cascaded to produce pipelines.

Instruction Encoding of the Finite State Engine

Given a finite state diagram for a proposed processor, it is possible to use this diagram
to calculate the contents that the memory must have in order to carry out the function of the
proposed processor. First, we will describe how this is done by hand. Then, we will show how
this can be automated to produce memory contents on an engineering work station in an almost
automatic way.

Remember that the initial state was defined equal to 0 and that the remaining states of the
diagram, which has been reduced as much as possible, are number 1, ..., Ns-1. For each activity,
we have labels that state for a given value, X, we have a defined set of output values, Y. We
extend this label to append the binary value of the state from which the activity starts, n, to
produce a binary number, L, which is a concatenation of the binary numbers n, and X.
Similarly, for a binary number, C, by concatenating the binary value of the state to which the
activity points, n, to the defined output values for that activity, Y. That is,

L = X + (n *2')

and

q
]

Y + (n, 2™

Once this is performed for all activities, we should have a set of tuples of numbers which
we may sort, using a numeric sort on L, thereby producing a table where L is the value starting
with zero incrementing by one. The values, C, are similarly ordered according to its counterpart
in L. The table so generated may be viewed as follows: L is the index (or memory location)
of the engine memory and C is its contents. Using this process, we have generated the contents
of the memory to be used in the proposed processor!

In the event our sorted values of L have multiple entries for a given value of L, the finite
state diagram can be reduced! In the event all possible values of L do not occur in the table,
then the finite state diagram was not complete and must be completed. Even though the designer
is convinced that an activity is unreachable, it is good practice to signal some form of indication
that an impossible combination of inputs, coupled with the known state, has occurred.

Preparation of Finite State Engine Firmware With High Level Languages

For large processors, it is ofttimes awkward to actually draw and label a finite state
diagram for a proposed processor simply because it is too complicated. Yet a designer knows
the number of inputs, N;, the number of outputs, N, the number of states. Ny, and in terms of
some machine digestible algorithm, a proposed production rule, f. It is possible for the designer
to write a high level language subroutine (in the Forman language) which takes the following
form: using statement labels to represent each of the defined states, it is possible to write using
logical IF statements, of the form:

<state>IF(X=N) THEN Y=f(X,<state>) GOTO <next> ENDIF

<state> is the statement label for the state, n,, (to which the activity belongs) and <next> is the
statement label for the next state, n,. When this is done for all activities, the desired processor
can be defined to the computer.

Computer software® has been written by this author to call the subroutine written by
the processor designer to go through all possible combination of states and input values, X, and
to calculate an array which, in turn, is passed to routines which carry out the task oi placing the
memory contents into an ASCII text file written in the Intel hexadecimal object file format (Intel
Hex). In the event the firmware is to be placed in a PROM, EPROM, PLA, etc, it is only
necessary to copy this Intel Hex file to a properly equipped commercial device, a PROM
programmer, for the implementation of the firmware.

It should be pointed out that a printed circuit card layout for a finite state engine can be
constructed with only the knowledge of the number of N, Ny, and Ng with no knowledge of the
production rule, f. With a proposed processor, the circuit card layout is independent of the
algorithm that is used for calculating the output values in the next state. This means that in the
event that a mistake has been made in the statement of f, the change in the processor can be done
entirely through the use of an engineering workstation, using high level languages, thereby
producing new memories which are inserted into the device. These require no hardware
modification, i.e., no circuit changes whatsoever. This can be done without restriction as long
as any of the numbers of N;, N,, and N is not increased.

Applications of the FSE—

The finite state engine approach has been used to implement a number of different
processors. The first® was a device to continuously sample the video signal produced by an
RS 170B camera (in real time). The finite state engine was to capture these data and, at the
same time, convert the binary values to a modified run length encoded format (thereby
compressing the data and storing this in a memory for later use. The second® of these devices
was the counterpart of the video input stage. That is it was designed to continuously read from
the serial access memory, decompress the modified run length encoded data and to generate the
composite video which met RS 170B standards. Each of these two processors were built out of
components that were available from local suppliers at a cost of under $10.

The third application™ was a particularly taxing application of finite state engines. This
was used within the production of a data acquisition system for the receipt and orchestration of
the analog to digital conversion process in a nuclear magnetic resonance imager (MRI). Here,
signal conditioning, signal transmission, and preparation for use in the computer was done
through the use of three finite state engines. It has made it possible to use a PC class computer
for the entire process of signal acquisition, image reconstruction and image display. This is
carried out with the accuracy and speed comparable to the finest of the commercially available
medical imagers. The components required to carry this out, not including digital to analog and
analog to digital conversion modules and the computer itself, were assembled for a cost of under
$200.

Metastability

Metastability is a type of failure of a circuit that can occur when digital circuits try to
capture the value of a digital signal through the use of a clock. An example of this is a latch
with a digital input that does not obey the rule that the input must be in a known and stable state
for a period of time &, before the rising edge of the clock and a time &, after the rising edge of
the clock. When this is not the case the output of the latch can drift into the indeterminate range,
or as bad, go into oscillation for an extended period of time. This will cause your processor to
get the wrong answer! Engineers calculate the probability that this will occur by a measure, the
Mean Time Between Failure (MTBF). A formula for this is®

MTBF = (exp((1/F)-Tp)/G) / 2F:FpTp

where: F. is the clock frequency.
F;, is the asynchronous data rate of the input.
T, is the flip flop (latch) propagation delay.
G is the flip flop inverse gain-bandwidth product.
Tp, is the total gate delay between the clock edge and any destination ﬂ1p flops
that receive the output data.

Reference 8 gives a nice example for a single D type flipflop where the propagation
delay equals 7 nsec, the setup time = 1.5 nsec, the hold time = 2.5 nsec, the inverse gain-band
width product G = 2.1 nsec max. Using these numbers it is calculated that T; = 7.0 nsec and
Tp =7 + 2.5 + 1.5 = 11 nsec. When the clock frequency F. is 8 Mhz and the asynchronous
input data rate is 4 Mhz, the MTBF calculates out to be 27 billion years. However, if you double
both the clock frequency and the asynchronous data rate, the calculated MTBF falls to 6.9 hours!
In our quest to force our processors to go ever faster, we run the risk of failure if we do not
account for the possibility of metastability.

A large system consisting of many finite state engines can be viewed as a directed graph,
in the mathematical sense, with clocks being presented to each FSE and the outputs of one engine
being presented as inputs to another. As long as the clocks to each FSE are adjusted so that the
rules are followed (and whether or not this is so can be calculated), then within the system, the
MTBF of the entire system is infinite! Stated in another way, the probability of failure due to
metastability is identically zero. Only with the signals coming in asynchronously from the
outside does any possibility of metastability occur. A synchronizer for asynchronous input data
can be formed by a FSE with a nul function module giving in essence two latches in series.

Reference 8 proposes this as a good way to produce a circuit that produces a calculated MTBF
in excess of a billion years. This might be sufficient.

Rules for the Design of the FSE

Looking at the FSE inside and outside the halo which the latches on input and output
provide, we can define a set of rules which, if obeyed, allow the design of a stable device with
well behaved attributes. Only the external attributes are important in the use of this engine. The
Inputs -> LFL -> Outputs can be used a representation for an engine. On the inside the function
module, F, is bracketed by latches, L.

1) The function module, F, must exhibit the characteristics that within a time period,
A, after its inputs become stable, the outputs of F have been determined and
remain so until an input changes. The characteristic time, A, may be in
nanoseconds if F carries oui a Floating Point (FP) multiply, or it may be measured
in microseconds if F carries out a fourier transform or it may be measured in
milliseconds if it carries out a complete image reconstruction of a magnetic
resonance image or an ultrasound image.

2) The latch, L, is designed to have the characteristic- that its input is sampled
sometime within the interval of €, before and €, after the rising edge of the clock

that drives the latch. The times €, and €, should be extremely short, preferably
measured in picoseconds, and €, should be as close to zero as possible. In the
event the latch sees a transition within this brief time interval, the latch should be
allowed to choose either level it wishes (remember the input was in both states,
else there would not be a transition so why should it not choose one or the other).
In any case, after a time, &, the outputs of the latches are set correctly and held
absolutely stable until the rising edge of the next clock pulse. The characteristic
time, €, should be short, measured in only a few nanoseconds, at most.

It should be noted that if several FSEs are used in tandem, then the representation
Input --> (LFL)(LFL) --> Outputs may be reduced. The interior latches are not necessary (unless
needed to introduce a desired time delay) and may be virtual, that is, these need not be included
in the hardware at all. The characteristic of F, F, is simply A, + A,.

Endogenous Clocking of Processors

It should be obvious to any reader that to multiply 8.7 x 10" by 1.98 x 10 ¥ should take
a longer time than multiplying 3.0 by 0.0. Work is going on by many vendors to try to make
the finest of their processors perform each operation in one clock. Even then, why should the
multiply by 0.0 take a full clock. If a function module can recognize that its task is complete
within this time cycle, it should be possible to offer the signal line that states that it is complete
to allow this to be the clock begin immediately the next step of a sequence. A properly
designed function module could supply the clock to its latches as well as to supply an indication
to other processors that its outputs are stable. Dead or idle time in a processor because of a
regular clock is no longer necessary.

Conclusions

In order to realize the potential capable in this technique we must consider the use of
multiple finite state diagrams which are implemented as multiple processors. It should be
understood that the output of one processor can be the input to any number of others. This
technique is suitable for massively parallel operations with global synchronization. This is
possible because of the fact that clock pulses to one device may be fed to any number of others.
The fact that additional circuitry has been developed and described elsewhere? that allow the
shaping and lengthening of extraordinanly quick pulses. It should be pointed out that by defining
the number of states to be 1, any combinatorial logic can be represented. It is true that this can
also be achieved in devices such as PALs, yet, it should be pointed out that, at times,
combinatorial logic modules are needed and by using a finite state engine it will assure the
designer that the combinatorial logic will execute at the same speed as other processors.

Unlike many other CPU design techniques, the signals are stable except after the rising
edge of the clock pulse. This makes simple the act of designing error detection monitoring (and
possibly correction) circuitry in redundant systems. ’

The fact that the clocks may be asynchronous and controlled by the processor allows (by
way of the use of CMOS logic) low powered dissipation in a processor except when it is needed.

Finally, it is proposed that the finite state engines described herein be used as a basis for
a new class of VLSI components. Imagine an integrated circuit having input/output connections,
power, reset and clock pulses that can be bought as different members of a class of generic
devices. Then, through the use of an engineering work station, (a PC and a PROM programmer),
alone, a circuit designer with only a simple work station and modest equipment can design and
build a large class of custom processors in his own laboratory. This capability is what Prof.
Carver Mead thinks will bring about an increase in cost effectiveness in computing. This author
will add to this by adding the convenience of performing the design in the designers own
laboratory, a larger number of designs will be tried. This will certainly contribute to the
development of more efficient and powerful custom processors.

Entire new class of computer designs are. possible. Hopefully, these will consist of the
use of many different little ones, rather than the microprocessor designers current apparent
preoccupation of building ever stronger, ever faster, monolithic (single) devices.

According to the book state machines come in just two varieties §

1. The Mealy State Machine

INPUTS LOGIC [|FLIP/FLOPS LOGIC

OUTPUTS\
g 7

T

A state machine with pulse outputs.

2. The Moore State Machine

INPUTS LOGIC | |FLIP/FLOPS 2 LOGIC

OUTPUTS

A state machine with level outputs.
There is yet anothers

3. The Letcher State Machine

CLOCK:

INPUTS LATCH LoGgic [rLaTtcu

=

A state machine with level oufput.

»

OUTPUTS
>

CLOCK

RESET/
—2
. MR CP
. Nx N —,}
INPUTS >
LATCH
b£° N
N <L/
. MEMORY N
N
N

LATCH
OUTPUTS
~ MEMORY e
OUTPUTS — & - , ~ .
. ! N "l |
< T—

Figure 2. The Timing Diagram for a Typical Finite State Engine.

Note: & = 6.5 nsec for a 74F374 latch and A < 20 nsec fo‘r' MB7112Y PROM,
Therefore, © may be 26.5 nsec! '

1. Carver Mead, Forbes, April 4, 1988. Pages 88-93.

2. J. McCarthy and P.J. Hayes, "Some Philosophical Problems from the Standpoint of
Artificial Intelligence", in Machine Intelligence 4, edited by D. Michie, New York: American
Elsevier (1969)

3. J.H. Letcher, "Latched Fedback Memory Finite State Engine". Patent Number 4786829.
Patent and Trademark Office. (1988)

4. J.H. Letcher, Latched Fedback Memory Finite State Engine". The Second Symposium on
Artificial Intelligence. Norman, Oklahoma (November 3 & 4, 1988)

5. J.H. Letcher, "FLIBSCI, The Fortran LIBrary of Synergistic Consultants Incorporated"
(1987) -

6. Henry Tromp, MSEE Thesis. University of Tulsa, Pages 20-36 (1987)

7. J.H. Letcher, "The Use of Weiner Deconvolution (An Optimal Filter) in Nuclear Magnetic
Resonance Imaging"”, 74th Scientific Assembly and Annual Meeting, Radiological Society of
North America. Chicago (November 30, 1988)

8. John Wakerly, "Designers Guide to Synchronizers and Metastability”, Parts 1 and 2.
Microprocessor. Report Vol 1, Number 1. Pages 4-8 (September/October 1987)

9. Stephen R. Masteller, EDN. Pages 169-174 (April 25, 1991)

10. Henry Tromp, MSEE Thesis. University of Tulsa, Pages 50-57 (1987)

With the publication (Letcher,1988) and patent application (Letcher, 1987) a new model
was presented for finite state machines. This model is different from all of the others as the
function module (which may be combinatorial logic, but need not be) is surrounded by "latches"
whereas the bi-stable memory devices (which may be latches) of both the Mealy and Moore

machines (as well as the intermediate or mixed models) are shown being entered into

combinatorial logic. The latter machines use combinatorial logic to modify the machine output
signals as well. The Letcher model tumed the Moore model inside out. This was not arbitrary
and without purpose. A number of distinct advantages were obtained over the previous models.
These differences (advantages) include the following:

1.

The probability of circuit malfunction of Letcher machines due to metastability
failure is identically zero as long as certain well defined tlmmg condmons are met.
This is not true for the other models.

No hazards exist in Letcher machines whether these be static, dynamic or
essential.

The model of the Letcher machine permits the calculation of the upper bound on

the clock frequency and still preserve absolute freedom from metastability failure
and deleterious actions due to hazards.

The model of the Letcher machine permits total freedom to slow clocks to any
degree. This may or may not be shared by the other machine models. This is

useful in the design of laptop computers to run in low power mode while not being
used.

The model of the Letcher machine shows where research and development
activities could be concentrated, notably the development of latch circuits that - -
minimize the effect of the timing restrictions on these machines.

Because the maximum clock frequency of a Letcher machine is dependent upon
the worst case propagation delay in the function module (e.g., an arithmetic unit),
the possibility exists to rethink existing designs with the purpose of reducing only
this number at the cost of additional circuit complexity. (normally circuit
complexity is minimized to produce the fastest unit possible). It might be possible
to produce a faster unit by redesign and making the unit more complicated.

Any function module may be used in a Letcher machine as long as the following
are true:

a. the module has digital inputs
b. the module has digital outputs
c. the module produces stable outputs at a finite (which is usually small)

propagation delay time A, after all of the inputs have become stable, no
matter what the input values are.

This makes it possible to produce, among other things:

a. fuzzy logic engines where the module circuity may or may not be digital
logic

b. hybrid (analog) function modules for real time solution of differential
equations in guidance systems

c. ultra high speed arithmetic units. Using commercially available

components, engines can be built which can be clocked at 400 Mhz.

The Letcher machine requires (according to the patent) that the inputs be stable within a
short time interval before the rising edge of the clock) plus a short time interval after the rising
edge of the clock. In practice, this can be relaxed as long as the input latches are designed so
that a stable output is obtained even when input levels change during the critical interval. The
output level which is chosen by the latch does not matter.

The latch used in Letcher machines should require that the low to high transition of the
clock be crisp. There is no apparent reason to try to relax this requirement.

The Letcher machine has no hazards, wither static or dynamic as long as the logic
contained with the latches obeys the maximum propagation delay criterion.

All of the machines considered are built from a set of circuit elements (transistors, etc).
No claim is made by anyone with regard to the novelty of any of these elements. Instead, the use
of the elements in ways that match model templates make the distinction of one invention from
another. Trying to use the argument that each machine is equivalent because a common set of
elements is employed is certainly similar to proving the equivalence of a Hereford bull and a Billy

goat (after all, each is made up of cells and these are organized into systems that are surprisingly
similar).

In summary:

1. prior art for pulse and level output synchronous state machines fall into three
categories: the Mealy Machine, the Moore Machine and mixed types such as the
Signetics/Data I/O Moorly Machine. The Letcher machine is different from any of
these, not because of clocking action rather because of the placement of the latches
(bi-stable memory devices).

2. Clocks for any of these machines all appear to be edge triggered even though
almost all of the literature is silent on the issue of clocking type. Whether a clock

is edge triggered or "level triggered" does not change the taxonomy of the machine
classification. ’ .

3. Models of all prior art show combinatorial logic used on input signals. This is a
clear distinction from the Letcher machine. ’

