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        Preface

Discrete integral transform techniques have been shown to be useful in many ways in the analysis
of time series.  A time series is defined as a set of data where each member of the set is a number.  Each
number represents the sampling of a continuously variable quantity which is the subject of our analyses.
Usually, the time interval between each successive sample is chosen so that each interval duration is the
same as any other.  Furthermore, the set of data that is to be analyzed is ordered so that the first element in
the set is the number that was obtained first and the last element in the set is the one that was obtained last.
With the use of discrete integral transform techniques,  information can be obtained from these data  about
this time series that cannot be obtained in other ways.

If one examines a text book on digital image processing (Castleman) it is found that
over half of the book is devoted to expositions on integral transforms in general and discrete
integral transforms in particular.  The same thing can be said with regard to books on digital
signal processing.  So what are these things?  Why are they useful?  How can these be
applied?  Finally, how do I, a user, implement these ideas easily on a computer? This
document is meant to function as a road map to explain to a computer user some of the
salient points with regard to integral transforms.  Then, the user will be introduced to the fact
that accompanying this document is a floppy disk containing sets of files and these files are
those that allow the user to carry out these operations called from his own Fortran or C
program.  The questions with regard to what these files are and how do I use them will be
answered.  Finally, what will be presented is a sequence of Fortran and C test programs that
enable the user to try these routines and to gain a feeling for the action taken in the analysis
of time series by both discrete fourier and discrete wavelet transformations.

Introduction

This document is to serve to introduce a serious scientist or engineer to a new and
exciting analytical tool, the wavelet transformation.  The wavelet transformation is a member
of a set of integral transforms, others of which, notably the Fourier transform, are already
well established as a must in any well designed Scientist/Engineer tool kit.  No prior
knowledge of integral transforms is assumed in this document in order to read and understand
the material.  It is intended to introduce these topics in a way that develops a functional
vocabulary for the Scientist/Engineer and to present some of the uses of these in subjects
such as digital signal processing and statistical time series analysis.

Topics such as convolution and correlation will be presented and discussed; yet, it
will be found that these techniques as well as most others of interest are performed by
execution of only a small set of techniques.  Three of these are fundamental:  1) the fourier
transform, 2) the (forward) wavelet transform, and 3) the inverse wavelet transform.  We
mean by this that other techniques such as convolution and correlation are performed by
enlisting services of one of the basic three tools (that is, after a modest preparation of data).
How the basic three are performed (the algorithms) is interesting yet is not essential to the
understanding of how to use any of the entire set of tools.

The basic three computer routines (to perform these tasks on user supplied data) are
normally written in assembly language.  These three are specifically designed to take full
advantage of the architecture and organization of the arithmetic processor on which the
calculations will be performed.  But, the rest of the tools are written in  high level languages
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(Fortran-77 and C).  These are easily read and understood by those skilled in the art of
science or engineering and, if desired, the action of the three assembly language routines
(which consume over 95% of the computer time) can be taken as an article of faith.

A statement should be made with regard to notation used in this document.  A (non
bold face) Roman letter will be used to designate a continuous function and the symbol
shown in parenthesis will be the independent variable.  That is, f(t) will be used to describe a
function of the variable t and f(ti) will denote the value of the function at t = ti , that which has
been measured or calculated.  Bold face Roman characters will denote sets of values of functions taken
over regular intervals; that is, f will stand for a set of array values {f(ti )}, i = 1, ..., N.  Therefore, (f)i = f(ti).
For purposes of these discussions the values of f(t) are unknown for all values of t less than t1 and are
unknown (or unmeasurable) for t greater than tN.  The regularity of the interval states that ti+1 - ti = T, a
fixed known value.  As a result, the total sample time is NT ≡ To.

Systems and The Analysis of Signals

The subject of our analyses, the signal, is of one or two types of sequences of numbers which are
sets of numbers which are of defined lengths.  These numbers represent the sampling of a continuous
function, normally of a single independent variable, at regularly spaced intervals.  The purpose of the
analyses is to determine by calculation, information about the continuous function that is not readily
discernable by inspection of the signal itself.

The value of the numbers of the set are either real or complex; that is, the signal that is sampled is
single valued at any instant of time or it has two values.  In the latter case it is convenient to represent the
two numbers, xi and yi, as components of a complex function f such that f(ti) = x(ti) + i y(ti) where i =

1- .  x is called the real part and y is called the imaginary part.  The reader is cautioned that the term
imaginary is used in the mathematical sense; it does not refer in any way to the reality of the values or
signal component.  The analyses will be carried out entirely on sampled data, those all which values are
determined at fixed intervals of time.  In this process of sampling, information is lost with regard to the
continuous function; yet, theorems exist that allow us to put bounds on any errors that may occur in our
analyses using the sampled data.  This is of utmost importance because our analyses are to be performed on
digital computers with which we have difficulty defining continuous functions.  These machines prefer sets
of numbers to operate upon.

We wish to study signals for many reasons.  One of the best of these is that it offers techniques to
study "systems".  A cybernetic system is any configuration (math, physical, biological, social) that admits
inputs and produces outputs.

                                           f(t)      g(t)

Inputs → System → Outputs

By applying known input signals to a system and measuring the outputs and performing analyses on these
input and output signals, it is possible to characterize a system.  This then makes it possible to calculate the
outputs of a system under any set of inputs; i.e., we have a model.

The modelling capabilities and the predictive abilities of the models make these techniques
desirable to use anytime the values of attributes of an entity can be measured as a sequence of number
values.  Our analyses give us the ability to learn more about the entities which are under study than can be
directly measured.

Our goal is to acquire information about signals and systems using sampled data, only, and then to
infer knowledge about the systems that in fact admit continuous inputs and produce continuous outputs.
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Our analyses will be couched in such terms that we know nothing about the signal, f, before the time at
which the first point is sampled.  Furthermore, we will acquire a finite number of points and know nothing
about the signal after the time at which the last point is sampled,  yet we wish to glean information about
the continuous function, f, from only these values, perhaps even to extrapolate what the sampled value will
be at a future time.  This is quite a challenge.

We must start with a rather theoretical discussion of mathematical properties of single valued
functions in the continuous domain.  After establishing relationships in the continuous domain, a magic
wand will be waved over all of the continuous function relationships and equivalent ones for discrete
(sampled) data will be presented.  This step is far from trivial and these mappings will be given without any
rigorous proofs as excellent references are given to the reader which justify these leaps.  The point is that
relationships are easier to establish and prove in the continuous domain yet are all but impossible to
address by calculation in a digital computer owing to its inherent discrete nature of its data objects.  As the
theorems and relationships stated for continuous functions have direct corresponding counterparts in the
discrete representation, we will use each in its place as it suits our purposes.

Our goal is to study continuous signals and systems producing continuous outputs.  We will use
the tools of sampled data sets.  We will then be able to state the bounds on the errors, inaccuracies or
misinterpretations due to the fact that we sampled the signals.  This seemingly unreachable goal is made
possible because of the Sampling Theorem which in essence states that it is possible to reconstruct a
continuous function exactly from sampled data as long as the signal has certain properties (e.g. the signal
does not contain frequencies greater than half of the sampling frequency).

Definitions of Commonly Used Terms

We intend to introduce a list of properties of continuous functions of one independent variable.
The reader is cautioned that this is not a rehash of the material learned in college mathematics courses.  The
integrals are not Reimannian.  Many of the functions under study have properties that would not have been
allowed in undergraduate courses: imagine a function that is zero everywhere except one point, and is
undefined at that one point.  Yet, this function exhibits properties so interesting that its description deserves
chapters in books (this is the impulse function δ(t) described below).

This topic described herein is based on the fine work of Oliver Heavyside (1850-1925) whose
Operational Calculus established much of the foundation of this material.  This work was continued and
extended by others, eg., Schwartz (1950) in his Theory of Distributions.

The definitions listed below extends what was known and what was presented in standard calculus
classes.

The object of study is a signal, f, which is a function of t (which is usually time, but need not be).
In general, f is complex; that is

f ( t)   ≡   freal (t)  +  i fimag (t)  where i = 1.-

The magnitude operation  f(t)  is defined as

 f + f      | (t) f | 2 
g a m i 

2 
l a er  ≡ .

A time function f(t) is called L1-stable if

 ∞∫
∞

∞

 <dt  |) t ( f | 
-

 .

A time function is called L2-stable iff
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 ∞∫
∞

∞

 <dt  |) t ( f | 2 

-

 .

 A convolution of two time functions f(t) and g(t) is given by

Note that if f and g are L1-stable, so is  f*g.

The convolution is commutative, i.e., f*g = g*f and, the convolution is associative, i.e.,
(f*g)*h = f*(g*h) and the convolution is distributive with respect to addition, i.e., f*(g+h) = f*g + f*h.

The Unit Step (Heavyside) Function is defined so that u(t) ≡ 0, t < 0 and u(t) ≡ 1 t ≥ 0.
Familiar function forms may be used to approximate the Heavyside function.  For example,

The Impulse Function is defined so that

. 1 = t d ) t (   dn  a  0   t 0 = ) t ( 
-

δδ ∫
∞

∞

≠

A basic relationship is that

The function ) t ( δ   exhibits an interesting scaling property which is

We may use the relationships that

. g * f     d )  ( g )  - t ( f   =  ) t (h 
-

≡∫
∞

∞

τττ

. 
2

    t tan    
2

-    where0 >  ,  ] t tan 1 + 
2
1 [ 

0  
lim

 = ) t (u 

or     ) 
t 
t + 1 ( 

2
1 = ) t (u 

1-1-
+

2 

π
ε

πε
επε

≤≤
→

. ) 0 ( f  =dt   ) t (  ) t ( f 
0

δ∫
∞

. ) t (  
| a |

1  =  ) t a ( δδ

. ) t (u  
dt
d  =  ) t (   dn  a , 0 >   ,  

 + t
 1 

0  
lim

  =  ) t ( 
22+

δε
ε

ε
πε

δ
→



6

It should be noted that  δ(t) is even, that is, δ(-t) = δ(t).

Also, δ(t) Plays the role of Unity in convolution, that is, f(t) * δ(t) = f(t).

The Dirac Theorem states that

) t ( f  ) 
dt
d (  =  ) t (  * ) t ( f n(n)δ

A function f(t) is one-sided if f(t) = 0  t<0.  Hence f(t) u(t) = f(t).
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The Laplace Transform

The one-sided L2 Laplace transform is defined by two relationships.  The first is the forward
Laplace transform F(p) of f(t) is defined by the relationship

The second relationship expresses the inverse transform.  It can be shown to be given by

We now introduce the symbol ↔ to represent the Laplace transform and its inverse.  Now we say:

Note that

and

) p ( F e    ) c + t ( f p c ↔   where c is complex.

The last relation is obtained by using the substitution s = t + c and ds = dt, then

                                 s d e ) s ( f e  = t  d e ) c + t ( f     ) c + t ( f         s p - p c 

0

 tp - 

0 
∫∫
∞∞

↔

An important theorem states that the Laplace Transform of δ(t) = 1 for all p

dt  e ) t ( f     =   ) p ( F  tp - 

0
∫
∞

. p    p   . dp e ) p ( F    
i  2

1  =  ) t ( f 21 
 tp 

 i + 

 i - 

≤≤∫
∞

∞

σ
π

σ

σ

) p ( F    ) t ( f ↔

) p ( F + ) p (G     ) t ( f + ) t ( g
 

) p ( F c    ) t ( f c

↔

↔

1   =   e   =dt    e ) t (     =   ) p ( F 0 p -  tp - 

0

δ∫
∞
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Another theorem states that if f(t) has Laplace transform F(p), then

since

.  ) p ( F p  =  ) p ( F )1 - e(  ) t ( f - )  + t ( f     
p  

εε
ε ε

↔

in the limit as
. 0   →ε

The Convolution Rule states that if F(p) and G(p) are the Laplace transforms of f(t) and g(t), then
the product F(p) G(p) is the Laplace transform of the convolution, f(t) * g(t), since

and

hence,

If f(t) has the Laplace transform F(p), then

) p ( F p    ) t (f      ) t ( f   
dt
d

↔′≡

) p ( F e    )  - t ( f  p  - ττ ↔

τττττ τ  d )  ( g ) p ( F e     d )  ( g )  - t ( f  p - ↔

τττττ τ  d )  ( g ) p ( F e     d )  ( g )  - t ( f   p -∫↔∫

τττ  d )  ( g e  ) p ( F    ) t ( g * ) t ( f  p - ∫↔

) p (G  ) p ( F    ) t ( g * ) t ( f ↔
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which is obtained by repeated application of the fact that

                                                        . ) p ( F p  ) t ( f 
dt
d

↔

  This allows us to state that the Laplace transform of the nth derivative δ(n)(t) of the impulse function = pn

(-∞ < Re(p) < ∞), since δ(t) ↔ 1.

Simply restated, the Dirac theorem states that if δ(n)(t) is the nth derivative of the impulse function, then

A one-sided L2-stable time function w(t) has been  called a wavelet although a more restrictive
definition will be used later.  Its Laplace transform

is called the transfer function of the wavelet. Its total energy is

and the partial energy up to time τ is defined to be

) p ( F p    ) t ( f      ) t ( f 
dt
d n )n  ( 

n

n

↔≡

) t ( f 
t d

d  =  ) t ( f  =  ds ) s - t (  ) t ( f   =

ds ) s (  ) s - t ( f   =  ) t (  * ) t ( f

n

n
)n  ( )n  ( 

)n  ( )n  ( 

δ

δδ

∫

∫

 td e ) t (  w   =   ) p (W  tp - 

0
∫
∞

f d | ) f ( W |   =dt   | ) t (  w| 2

-

2 ∫∫
∞

∞

∞

0

dt | ) t (  w| 2 ∫
τ

0
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The Hankel Transform

The Hankel Transform is defined

where f(t) is a real function and  Jm(z) is the mth order Bessel function.

We require that

and  f(t) is of bounded variation in the neighborhood of t = 0.

 t d ) t s ( J t  ) t ( f  = ] s ; ) t ( f [   ) t ( f   ) s ( F m
0

m  H ∫
∞

Η≡Η≡

∞∫
∞

 <dt  | ) t ( f | 
0

)
2
z( 

) 1 +k  + m (   !k 
) 1- (   ) 

2
z ( = ) (z J

 

ds ) t (s J  ) s ( f  = ) t (f

k 2k

0=k

m

 m 

m 
0

 I 

Γ∑

∫

∞

∞
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The Fourier Transform

The L2 Fourier transform may be defined by

dt e ) t ( f    =   )  ( F  t i - 

-

ωω ∫
∞

∞

and 

                 ωω
π

ω  d  e )  ( F    
 2
1  =  ) t ( f  t i 

-
∫
∞

∞

Bessels Equality states that

The Fourier Transform

                                             dt e ) t ( f   =  )  ( F  t i - 

-

ωω ∫
∞

∞

 is called the gain-and-phase spectrum where | F(ω) |  is the gain, log | P(ω) |  is the attenuation
and P(ω) is the phase-shift, where  F(ω) = | F(ω) |  eiP(ω).

The Fourier Transform may also be expressed as

which may be decomposed as follows:

| H(f) |  is the amplitude or Fourier Spectrum ) f (  dn  a , ) f (I + ) f (R   =  2 2 θ
is called the phase ) f ( e R / ) f ( m I  n a   t =  1 

The Inverse Fourier Transform is given by

.  d | )  ( F |    
 2
1  = t  d | ) t ( f |  2 

-

2 

-

ωω
π ∫∫

∞

∞

∞

∞

dt e ) t (h     =   ) f ( H  tf i  2 -

-

π∫
∞

∞

e | ) f ( H |  =  ) f ( I i + ) (f R   =   ) f ( H ) f (  i θ
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It should be noted that the functions h(t) and H(f) may be real but are in general complex, that is
there is a real and an imaginary part to each.

The Fourier Transform operation may be represented by the notation

                             h(t) ⇔ H(f),   h(t) = FT-1(H(f)),   and H(f) = FT(h(t).).

It is sufficient (but not necessary) that  .   <dt   | ) t (h  | 
-

∞∫
∞

∞

Examples of Fourier transform pairs are the following

It is straight forward to show that

 and

Also, another Fourier transform pair is a sequence of equally  spaced impulses with another  sequence of
equally spaced impulses.

f d e ) f ( H    =   ) t (h  tf i  2 

-

π∫
∞

∞

f T  2
) f T  2 (sin  TA  2    T < | t |    ,A   =  ) t (h 

o

o
oo π

π
⇔

 tf  2
 t)f  2(sin  fA  2    f < | f |     ,A    =   ) f ( H

o

o
o o π

π
⇔

. ) f ( K   K     =   ) t (h δ⇔

)f + f (  
2
A + ) f - f (  

2
A     t)f  2 ( cosA ooo δδπ ⇔

) f - f (  
2
A i - )f + f (  

2
A i    ) t f 2 (sin A ooo δδπ ⇔

)(1)()()( ∑∑
∞

−∞=

∞

−∞=

−=⇔−=
nn T

nf
T

fHnTtth δδ
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Parsevals Theorem states that

Fourier transform properties are given by the following

linearity:
             ) f ( Y + ) f ( X    ) t (y  + ) t (x ⇔

symmetry:
                                                                    FT ( FT ( h (t) ) )  =  h (-t )

time scaling:

                                               )( H 
|k  |

1  )k t  (h 
k
f

⇔

frequency scaling:

) f(k  H   ) 
k
t (h  

|k  |
1

⇔

time shifting:

e ) f (  H   ) t t  (h t f i  2  
o

oπ⇔

frequency shifting:
) f - f ( H    e ) t (h o

 tf i  2 o ⇔π

For he  even:

 t d ) t f  2 ( cos ) t ( h   =  ) f ( R    ) t ( h e
-

ee π∫
∞

∞

⇔

For ho  odd:

dt ) t f  2 (sin  ) t ( h i -   =  ) t ( I i    ) t ( h o
-

oo π∫
∞

∞

⇔

H(f)   =   R(f)   +  iI(f)   =   He(f)   +   Ho(f)

df | ) f ( H |    =dt    | ) t (h  | 2 

-

 2 

-
∫∫
∞

∞

∞

∞

] 
2

)t - (h  - 
2

) t (h  [  +  ] 
2

)t - (h  + 
2

) t (h  [  =  ) t ( h + ) t ( h  =  ) t (h oe
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Complex Time Functions can be represented by the following

h(t)   =   hr(t)   +   i hi(t)

H(f)   =   R(f)   +   i I(f)

The table on page 46 in the Brigham reference should be examined for more information.

Convolution is again defined

The Convolution theorem states that

Also,

Correlation is defined by the relationship

) f ( X ) f ( H   dt    )  + t ( x )  (h  * 

-

⇔∫
∞

∞

ττ

here X*(f) is the complex conjugate of the function X(f).  When the functions x and h are the same the term
auto-correlation is used.  Otherwise, cross-correlation is applied.

Important properties of convolution are that:

commutative:
    h *  x = x  *h 

associative:
) t ( x * ] ) t ( g * ) t (h  [  =  ] x * g [ *h 

distributive with respect to addition:

                          ) t ( x * ) t (h  + ) t ( g * ) t (h  = ] ) t ( x + ) t ( g [ * ) t (h 

) t ( x * ) t (h   =  ) t (h  * ) t (  x    d ) - t (h  )  ( x    =   ) t (y 
-

≡∫
∞

∞

τττ

) f ( X ) f ( H    ) t ( x * ) t (h ⇔

) f ( X * ) f ( H    ) t ( x ) t (h ⇔

τττ  d )  +(t h  )( x    =   ) t ( z
-
∫
∞

∞
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g * f + g * f  =  ) ) t ( g * ) t ( f ( 
dt
d   ′′
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Linear Systems

A  system is any configuration (mathematical, physical, biological, social) which over time admits
inputs and yields outputs.  An input h(t) is said to cause g(t), the output or effect or normal response of this
system.  This is to say that there is no part of g(t) which is not caused  by h(t), i.e., there are no additional
internal factors generating a contribution to g(t).

h(t) ----------> ------------ causes ------------> --------> g(t)

                              Inputs ---------->              System -------> Outputs

We assume that the system has been at rest up to t = to, i.e., h(t) = 0, t < to.  Therefore, h(t) is one-
sided.

At this point a few definitions are in order:

1. The system is called realizable if g(t) = 0 for t < to

2. The system is called time or shift invariant if h(t + s) causes g(t + s)
and

3. The system is called linear if [c1 h1(t) + c2 h2(t)] causes [ c1 g1(t) + c2 g2(t)]

Henceforth, the term "system" is used for a cause and effect, time invariant, linear system.
We are concerned only with the relationship of the output to the input.  What is inside the system is of no
concern to us in the present discussion.

Our definition of system is confined to the subset of the general class of systems so that the
relationships of linearity and shift invariance hold.  Furthermore, so that we may be able to use the
mathematical machinery that we have developed, we require that the input to the systems be one-sided.

Consider now an input function which is a complex valued signal of the form
where  . f  2 =  dn  a 1 - = i 2 πω   This is called an harmonic signal.

The output of a shift invariant linear system subjected to this input may be defined to be

We may supply a second input signal ) t ( h 2  to this system which is obtained by time shifting

. ) t ( h 1 

) t sin  i + t ( cos  =  e  =  e  =  ) t  i ( p x e  =  ) t ( h  tf i  2 t i
1 ωωω πω

) t  i ( exp ) t ,  ( B  =
) t ( h ) t ,  ( B  =  ) t ( g 1 1 

ωω
ω
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The output of this system to the input ) t ( h  2 is given by

Because the system is linear, an input signal of )(t  f 1 multiplied by the complex constant

)   i - ( p x e Τω produces an output

Therefore,

) ( B  =  )   - t  ,  ( B  =  ) t ,  ( B ωωω Τ

We may now say that the response of a shift invariant linear system to an harmonic input is simply that
input multiplied by a frequency dependent complex constant.  Also, we have shown that an harmonic input
always produces an harmonic signal output at the same frequency.

Shift invariant linear systems also preserve realness

x(t)  causes  y(t)  implies that  Re (x(t))  causes  Re (y(t))

That is, the real and imaginary parts of an harmonic input go through a system independently.

In general, the input signal h(t) will consist of many frequencies.  The Fourier transform of h(t) is
H(f) which may be  nonzero for many values of f.  Also, we say that the Fourier transform of the output
signal g(t) is G(f).  At each of the frequencies the relationship

holds.  For a given linear system the value of B(f) is defined although, clearly, the value at one frequency
need not be the same as it is at any other frequency.  We call the function B(f) the  transfer function of the

) t ( h )   i - ( [ p x e  =
)   i ( p x e )   i - ( p x e  =

) ]  - t [  i ( p x e  =  ) t ( h

1 

 2 

Τ
ΤΤ

Τ

ω
ωω

ω

) t  i ( p x e )   i - ( p x e )   -  t  ,  ( B  =
) ]   - t  [  i ( p x e )   - t  ,  ( B  =  g 2 

ωωω
ωω

ΤΤ

ΤΤ

)   i ( p x e ) t ,  ( B )   i - ( p x e  =  ) t ( g 2 ΤΤ ωωω

) f ( H ) f ( B  =
) f ( H )  ( B  =  ) f (G ω
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system.  The importance of this function is that this function, alone, characterizes the system; that is, once
the transfer function B(f) is known, then we can calculate the output signal of a system for an arbitrary
(suitably well-behaved) input signal.  The above states that for an arbitrary input function h(t) with Fourier
transform H(t), the Fourier transform of the output signal G(f) is the product of B(f) and H(f).  So, the
output signal g(t) may be calculated by taking the inverse Fourier transform of G(f).

The convolution theorem states that the product of two function in frequency space (the transform domain)
is given by the convolution of two functions in the time domain.

 So if ) t (h  ( T F = ) f ( H )and ) t ( g ( T F = ) f (G ), then the relationship

) f ( H ) f ( B  =  ) f (G 

implies that

where

If this system is given an input signal which is the impulse ) t ( δ then the output of the system is

The response of the system to an impulse is the function b(t) which is the inverse Fourier transform
function B(f).  We call b(t) the impulse response of the system.  The knowledge of this function (and this
function alone) is enough to be able to calculate any output signal from any input signal.

Before we leave this discussion, some additional terms should be defined:

The system is dissipative if its impulse function b(t) is L2 stable.

It is realizable and dissipative if and only if b(t) is a wavelet, an L2stable one-sided function.  Note
that the term wavelet will be used in a more restrictive sense later.

The system is called a pure delay system if for f(t) as input, g(t) = f(t - α)  α ≥ 0, α ≡ the time
delay, hence the transfer function of a pure delay is

Consider:
b(t)   =   u(t) eαt

) t (h  * ) t ( b  =  ) t ( g

) ) t ( b ( T F = ) f ( B

) t ( b  =  ) t (  * ) t ( b  =  ) t ( g δ

. 0      ,  e p  - ≥αα
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where u(t) is the Heavyside function ( u(t) = 1 , t ≠ 0 , 0, otherwise).  The transfer function of this  b(t)  is
1 / (p - α).

 The following table relates the terms realizable and dissipative to possible forms of b(t).

u(t) eαt realizable and non-dissipative Re α < 0

-u(-t) eαt non-realizable and non-dissipative Re p < Re α

u(t) eβt realizable and non-dissipative Re p > Re β > 0

-u(-t) eβt non-realizable and dissipative Re p < Re β > 0
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Inverse Systems

Consider a system with impulse response b(t).  I could be that the action of this system produces
an undesirable result.  We may wish to "undo" the undesirable action of the system by adding an additional
system in series with the other so that the two systems, taken together, act as if they were perfect; i.e. all
frequencies are passed through the combined system without attenuation (change in amplitude) or change
in phase.  That is, the transfer function of the combined system is such that . 1  )  f ( B  T ≡   We call the
second system the inverse system.  Diagrammatically, we have

        h(t)     -->       System -->     g(t)    -->  Inverse System -->      h(t)

We have already established that

or

Let us now assert that if it exists, the impulse response of the inverse system shall be defined to be i(t) with
Fourier transform I(f).  For the inverse system to produce h(t) as its output from an input g(t), then it must
follow that

and

If we view the system and the inverse system, taken together, we see that

and

) t (h  * ) t ( b  =  ) t ( g

) f ( H ) f ( B  =  ) f (G 

) f (G  ) f ( I  =  ) f ( H

) t ( g * ) t ( i  =  ) t (h 

) t (h  * ) t ( b * ) t ( i  =  ) t ( g * ) t ( i  =  ) t (h 
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Again if it exists, then it follows that

or
 ) f ( B    ) f ( I -1≡     , the reciprocal of B(f)

and
 ) t (   =  ) t ( b * ) t ( i δ    , an impulse.

The problems of existence come when B(f) = 0 for some values of f.  If, however, we
assert that 0  ) f ( I ≡  and under these circumstances,  1  0 / 0 ≡ , then our problems are defined away!
This apparently outrageous assertion will prove to be quite workable in most computational circumstances.

) f ( H ) f ( B ) f ( I  =  ) f ( H

) f ( B ) f ( I  =  1
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The Hartley Transform

The Hartley transform is a special case for the Fourier transform which is defined on a real
function V(t) . Application of this transform produces a real function H(f).  The transform pair is
 defined:

For comparison, the Fourier transform written according to the same convention is given by:

and

The relationship between the Fourier and Hartley transforms is derived based upon symmetry
considerations. To do this we split H(f) into its even and odd parts, E(f) and O(f).  To connect the transform
H(f) with the Fourier transform F(f) of V(t), we adopt the following definition: Let H(f) = E(f) + O(f),
where E(f) and O(f) are the even and odd parts of H(f), respectively. Then

) t (sin  +  ) t ( cos    ) t ( cas  where
 

dt )  t f  2 ( cas ) f ( H    =  ) t  ( V
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The Fourier transform F(f) has a real part which is the same as E(f) and an imaginary part whose
negative is O(f). That is, Freal (f) = Re F(f) = E(f)  and Fimag (f) = Im F(f) = -O(f).

Conversely, given the Fourier transform F(f), we may obtain H(f) by noting that
H(f) = Freal (f) - Fimag (f) ; that is, from F(f) one finds H(f) as the sum of the real part and sign-reversed
imaginary part of the fourier transform.

To summarize: The Fourier transform is the even part of the Hartley transform minus i times the
odd part; conversely, the Hartley transform is the real part of the Fourier transform minus the imaginary
part.

The Discrete Hartley transform  of a real function f(t) is, with its inverse, is given by:

Using this notation, the Discrete Fourier transform and its inverse have the standard form:

We can say that  f / N is the same as frequency measured in Hz, over the range -N/2 < f < N/2. We
also arrive at equations for the even and odd parts that are consistent with what has gone before. Thus:

dt  ) t  f  2 (sin  ) t  ( V   =  2 /  )  )  f - ( H - )  f ( H  (  =  )  f ( O

dt  ) t  f  2 ( cos ) t  ( V   =  2 /  )  )  f - ( H + )  f ( H  (  =  )  f ( E
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and

From the definition of the discrete Fourier transform it is apparent that F (f ) can be formed from
the discrete Hartley transform's even and odd parts by using:

Conversely, to form H (f ) when F (f ) is available, one may use

2 / ) ) f - N ( H - )  f ( H (  =  ) f ( O

)  f ( O i - ) f ( E  =  )  f ( F

).  f ( F Im - )  f ( F Re  =  )  f ( H
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Inner Product Spaces

Let us now consider C[0,1], the space of all continuous real valued functions on the closed interval
[0,1] and L2 [0,1], the space of all square integrable functions on the interval [0,1].  Basis functions for
these spaces will be introduced and it will be shown how discrete analysis is applied to these spaces
through the use of the discrete fourier transform (which deals with L2[0,1]) and the wavelet transformation
(which deals with C[0,1]).

In each of these spaces, a scalar product is defined: if x(t) and y(t) are two functions defined in the

space then the scalar (inner) product of these function is given by
where x*(t) is the complex conjugate of x(t).

Also, a norm is defined by

 td ) t (y  ) t ( x    =   > ) t (y  , ) t ( x < * 
1

0
∫

]dt  ) t ( x ) t ( x  [  =  ]dt  |) t (x |  [  =  | ) t ( x | 2
1 *2

1 2 ∫∫



26

Fourier Series

A periodic real valued function y(t) with period 1 is one that exhibits the property that
y(t) = y(t + n) where n = 0, ± 1, ± 2, etc.  This function, y(t), may be expressed

The magnitude or coefficients of the sinusoids are given by the integrals

and

By applying the identities

and

then

It is not hard to show that if we were to introduce negative values of n (to simplify the expressions above)
then a-n  =  an  and b-n  =  -bn.  Note that since b-n  = -b-n, then b0W = 0.  We now have

Here, α = 1/2 (an - ibn)   n = 0, ± 1, ± 2, etc.
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Basis Functions

Consider a set of functions {Φn(t)}, n = 0, ..., N-1  such that

This is the delta function, which has the value of 1 if n=m, and 0 otherwise.

We call the set of function an orthonormal basis of a space.  In this inner product space, S, any member
function, f, can be exactly represented as a linear combination of the basis functions.  That is,

The expansion coefficients βn are calculated by the relationships
Carrying out these integrals to calculate the expansion coefficients is precisely what the discrete fourier and
wavelet transformations perform!

For the discrete complex fourier transform the basis functions are

A multiple of the single function ϕo represents the dc offset in the function f(t).

The wavelet transform uses a single ϕo, called a scaling function.  The rest of the basis functions
are dilations (a function made taller and thinner by multiplication by a constant) or translations (a function
moved intact laterally along the independent variable axis) of a single function, called a wavelet, that has
very special properties.

The act of performing an integral transform on a function answers the question:  "How much of
the function is contributed (in building the linear combination) by each of the basis functions?".
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Waveform Sampling

Consider a real (single valued) function f(t).  This is a continuous function, but we have chosen to
employ techniques to measure the value of the function at any defined value of t very accurately.  If this
signal representing the function f(t) is the voltage at a point in a circuit, then with analog to digital circuitry
it is possible to measure and record the binary value of the voltage precisely upon the command (a pulse) of
a computer.  It is possible to measure this value in a regular sequence of t values.  What is produced is a set
of numbers each of which represent a value of the signal at a precise instant of time.  Consider Fig (1)
which shows a family of functions that all have the same value at the sampling times.

      │
      │
      │
      │
      │
      │
      └──────┼─────────────┼──────────────┼──────────────┼
             t1            t2             t3             t4

Clearly, the three functions labeled A, B and C are not the same; yet measuring the values of each at t1, t2,
... produce identical values.  Our challenge is to be able to use the sampled values in our analyses ignoring
(for the moment) the differences between functions A, B and C.

This sampling process is equivalent to convolving the continuous signal with a sequence of
impulse functions δ(t1), δ(t2), etc.  We will use the properties described in the previous section to enable us
to see the consequences of what we have done.

Let  ∆0(t)  and  ∆1(t)  be defined

And

It will also be useful to define a function

In terms of the above we may define

∆o ( f )   =   F T ( ∆o (t) )

and ∆1 ( f )   =   F T ( ∆1 (t) )

That is ∆o ( f )  ⇔  ∆o ( t )
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and    ∆1 ( f )  ⇔  ∆1 ( t )

To relate the fourier transform H(f) of h(t) which are continuous functions to that we would obtain by using
sampled data, we use the relationship

[ H(f) * ∆o(f) * X(f) ] ∆1(f)  =  FT ( [ h(t) ∆o(t) x(t) ] * ∆1 (t) )

The reader is urged to examine the enclosed figure reproduced from the Brigham reference.  The
understanding of the material presented in this figure will justify the assertion made in the previous
equation.
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Discrete Transforms

The discrete complex fourier transform (DFT) of a function g(kT) is G(n/NT) where these are
related by the following

where n = 0, 1, ..., N-1.

The sampling interval is T and the total sampling period is T0.  There are N samples each of the functions g
and G so that if the time is normalized to the unit interval [0,1], i.e., T0 ≡ 1, then T  =  T0/N  = 1/N.

The discrete inverse fourier transform is given by

This may also be written

For the above relationships to hold (that the discrete transform and the continuous transform are
the same) requires:

1. The time function g is periodic with period T0.

2. g must be band width limited by having values of G (n/NT) = 0 for | n | ≥ NT/2

or, stated in another way.  The sampling rate must be two times the largest frequency component of G.

Discrete convolution is defined by the equation

where both x(kT) and h(kT) are periodic functions with period T0.
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The discrete convolution theorem is expressed as

Or

Discrete correlation is defined as

z, h and x are each periodic functions, thus:

The discrete correlation theorem is given by

Therefore,
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The Fourier Transform Software

Object modules to perform wavelet and fourier transforms are to be found  in the library flibsci.lib.
This library is compatible with the Microsoft Visual C/C++ compiler and linker.

Object modules have been prepared to execute a discrete complex fourier transform. Also supplied
are routines to calculate inverse fourier transforms, convolution, and correlation.

The  fast Fourier transform routine has the entry point named  FFT.  There are no subroutine
arguments and no function value is returned.

A preparatory subroutine FFTPR is called first, and only once, that fills  arrays  with the
appropriate sine and cosine values needed by the FFT routine.

The inverse fourier transform, the auto correlation, cross correlation and convolution of 8, 16, 32,
64, 128, 256, 512, AND 1024, 2048 and 4096 point complex data sets all call the routine FFT.  The routine
FFTPR and the other auxilliary routines are to be found in the source modules FFTETC.FOR (and
FFTETC.C, if desired).

The inverse fourier transform

is calculated by performing the fourier transform of the complex conjugate of the function Z(f) and then
taking the complex conjugate of the result (by changing the sign of the imaginary part) and then dividing
by the number of sample points, N.  This process is carried out by the routine IFFT which is supplied in
source module form in Fortran and C in the files FFTETC.FOR and .C, respectively.

Convolution is defined by the following:

where
                                           H(f)   =   FT ( h(t) )  =  the Fourier transform of h(t)

X(f)   =   FT ( x(t) ) , the Fourier transform of X(t)

and                                      H(f) X(f)   =  FT ( h(t) * x(t) )   =   FT ( z(t) )

Therefore,
z(t)   =   FT-1 [ H(f) X(f) ]

Correlation is similarly defined, thus
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The routines given in FFTETC.FOR to calculate convolution (CONV), autocorrelation (AUTOCORR) and
cross correlation (CROSS) are all written in Fortran (or C if FFTETC.C is used).  Each of these calls IFFT
and FFT to do the work.  The routine IFFT calculates the inverse fourier transform and it in turn calls FFT,
which is the only routine written in assembly language.

Remember that the discrete transform yields correct results for continuous functions only as long
as two important restrictions are obeyed.  These are:

1. The function to be transformed must be periodic with a period equal to the sampling
interval.

2. The sampling rate must be more than twice the maximum frequency content of the
function to be transformed.

Otherwise, the user is destined to learn more about aliasing, the Gibbs phenomenon and other things than
he probably ever wanted to know.

The wavelet transformation has no such restrictions!
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                               The  Forward and Inverse Wavelet Transformation Software

Software routines have been implemented to perform the forward and inverse transformations for
the Haar (M ≡ 2) and the D4 wavelets (M ≡ 4).  These have been written to handle 2, 4, 8, 16, 32, 64, 128,
256, 512 and 1024  data points.

A way to cause a forward wavelet transformation to be performed is to use

CALL WAVE(M,JT)

where N ≡ 2**JT; i.e., for JT = 3  then N = 8, for JT = 4 then N = 16 , etc.  The array, F, must have been
filled with the data to be transformed before the call is made.  The transform is performed and the A and B
arrays are filled with the "answers".

The inverse transformation is performed by using

CALL IWAVE(M,JT)

The B array must have been filled with data to be back transformed.  The arrays F and A are calculated by
IWAVE.  Again, M is the number of wavelet coefficients and N ≡ 2JT is the number of sampled data points.
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         The FLIBSCI.LIB Fourier and Wavelet Transformation Software

The routine SUBROUTINE FFTPR(NU), included with the FFT software in the library FLIBSCI.LIB,
must be called before any of the Fourier transform routines, that are described below, may be used.
Furthermore, it must be called again whenever the value of the variable NU is changed. Unless the
value of NU is changed in a program, this routine need only be called once; however, it does no harm to
call this routine any number of times.

The number of points utilized by each of the routines is given by specifying the value of NU which is the
LOG to the base 2 of the number of sampled data points, NFFT. That is, NFFT=2**NU.

Each of the routines uses certain data structures, irrespective of the number of data points included in the
transform calculation. Clearly, the number of data points is a power of 2. The maximum number of points
is 4096; that is, NU is less than or equal to 12.

The data structures (COMMON blocks) that are used in each of the routines is as follows:

      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      COMPLEX*16 XC
      COMMON/FFTT/XC(4096)
      COMMON/NFFT/NFFT

The values of the sampled data points are to be inserted into and read from the array XC.

The routine SUBROUTINE FFT calculates the (forward) fourier transform on the array of values given in
the complex array XC. The results are returned in the array XC, therefore the initial values in the array XC
are destroyed in this process.

The routine SUBROUTINE IFFT calculates the (inverse) fourier transform on the array of values given in
the complex array XC. The results are returned in the array XC, therefore the initial values in the array XC
are destroyed in this process.

The routine SUBROUTINE CONV(G) calculates the convolution of two complex functions, XC and G.
The result is placed in XC. G is an array of COMPLEX*16 values.

The routine SUBROUTINE AUTOCOR calculates the auto-correlation function of the complex function in
XC. The result is placed in XC.

The routine SUBROUTINE CROSS(G) calculates the cross-correlation function of the complex functions
in XC and G. The result is placed XC. G is an array of COMPLEX*16 values.

The routine SUBROUTINE HARTLEY calculates the Hartley transform of the real function given in the
array XC. The result is placed in the array XC. The array XC is destroyed in this process.

The routine SUBROUTINE IHARTLEY calculates the inverse Hartley transform of the real function given
in the array XC. The result is placed in the array XC. The origional values of the array XC is destroyed in
this process.
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The forward and inverse wavelet transform routines use the data structures given here:

      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      COMMON/WAVELET/F(4096),A(8192),B(4096),C(0:6)

These data structures (COMMON blocks) are used irrespective of the number of data points ,N, that are
employed in performing wavelet transformations, the type of wavelet used, and the number of data points
employed.

The value of N, the number of points used, is calculated by the wavelet transform routines from the value
of JX that is given as one of the subroutine arguments. The value of JX is the LOG to the base 2 of the
number of points. That is, N=2**JX. This forces the number of points to be a power of 2.

The value of JX must be less than of equal to 12.

The value of MX must be either 2, for Haar wavelets, or 4 for D4 wavelets.

A COMMON block. /WAVETC/, is defined within the wavelet transform routines. It is for the private use
of the FLIBSCI routines. The values may be read but not modified by anything outside the wavelet
transform routines. Its structure is given as follows, for reference only:

      COMMON/WAVEETC/N,N2,NT,JT,M

The routine SUBROUTINE WAVE(MX,JX) carries out the (forward) wavelet transformation on a real
function given in the array F held in the COMMON block /WAVELET/. The results are placed in the
arrays A and B.

The routine SUBROUTINE IWAVE(MX,JX) carries out the inverse wavelet transformation on a real
function given in the array B held in the COMMON block /WAVELET/. The results are placed in the
arrays A and F.
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